题意就是求出去掉一条边,还能按照原来的最短路的耗时从s到t
先一遍Dij求出s~t的最短路,然后从t bfs倒推回去,建立出最短路图C,然后在C上求割边
去掉的边若是C上的割边,那么就不能到达,否则能到达
const int N = 4e4 + 79;
const int M = 2e5 + 79;
struct graph {
int head[N], tot = 1, next[M << 1], ver[M << 1], edge[M << 1], num[M << 1];
inline void add(int id, int a, int b, int c) {
ver[++tot] = b;
num[tot] = id;
next[tot] = head[a];
head[a] = tot;
edge[tot] = c;
}
} G, C;
int n, m, s, t;
int d[N];
bool vis[N];
#define pii std::pair<int,int>
std::priority_queue<pii, std::vector<pii>, std::greater<pii> >Q;
inline void Dijkstra() {
memset(d, 0x3f, sizeof d);
d[s] = 0;
Q.push({0, s});
while(Q.size()) {
int x(Q.top().second);
Q.pop();
if(vis[x]) continue;
vis[x] = 1;
repg(x) {
int y(G.ver[i]), z(G.edge[i]);
if(d[y] > d[x] + z) {
d[y] = d[x] + z;
Q.push({d[y], y});
}
}
}
}
int low[N], dfn[N], tim;
bool bridge[M << 1];
inline void tarjan(int x, int in_edge) {
low[x] = dfn[x] = ++tim;
repc(x) {
int y(C.ver[i]);
if(!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if(low[y] > dfn[x]) {
bridge[C.num[i]] = 1;
}
} else if(C.num[i] != C.num[in_edge]) {
low[x] = min(low[x], dfn[y]);
}
}
}
int q[N];
inline void init() {
memset(vis, 0, sizeof vis);
vis[t] = 1;
q[++q[0]] = t;
rep(_, 1, q[0]) {
int x(q[_]);
repg(x) {
int y(G.ver[i]), z(G.edge[i]);
if(d[y]+z == d[x] ) {
C.add(G.num[i], x, y, z);
C.add(G.num[i], y, x, z);
if(!vis[y]) {
vis[y] = 1;
q[++q[0]] = y;
}
}
}
}
tarjan(s, -1);
}
int main() {
freopen("school.in","r",stdin);
freopen("school.out","w",stdout);
read(n);
read(m);
read(s);
read(t);
int a, b, c;
rep(i, 1, m) {
read(a);
read(b);
read(c);
G.add(i, a, b, c);
G.add(i, b, a, c);
}
Dijkstra();
init();
int Q, x;
read(Q);
while(Q--) {
read(x);
puts(bridge[x] ? "No" : "Yes");
}
return 0;
}