zoukankan      html  css  js  c++  java
  • 动态规划

    摘自维基百科:

    动态规划 ( Dynamic Programming ): 把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

    动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。

    通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

    如斐波那契问题,背包问题都可以用动态规划求解。

    适用情况:

    1. 最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态規劃算法解决问题提供了重要线索。
    2. 无后效性。即子问题的解一旦确定,就不再改变,不受在这之后、包含它的更大的问题的求解决策影响。
    3. 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态規劃算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
  • 相关阅读:
    题目:返回一个整数数组中最大子数组的和。(要求程序必须能处理1000 个元素)
    四则运算三(接受用户输入答案,并判断对错。)
    二维数组
    结对开发(一位数组)
    测试四则运算
    四则运算2
    程序设计思路
    项目计划总结
    小学二年级题目的改进
    二年级题目的改进
  • 原文地址:https://www.cnblogs.com/QiLF/p/9769862.html
Copyright © 2011-2022 走看看