zoukankan      html  css  js  c++  java
  • 【洛谷 P2553】 [AHOI2001]多项式乘法(FFT)

    题目链接
    简单处理一下输入,(fft)模板题。

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <cstring>
    #define re register
    using namespace std;
    const int MAXN = 1000010;
    const double PI = M_PI;
    struct complex{
        double x, y;
        complex(double xx = 0, double yy = 0){ x = xx; y = yy; }
    }a[MAXN], b[MAXN], *f;
    inline complex operator + (complex a, complex b){
    	return complex(a.x + b.x, a.y + b.y);
    }
    inline complex operator - (complex a, complex b){
    	return complex(a.x - b.x, a.y - b.y);
    }
    inline complex operator * (complex a, complex b){
    	return complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
    }
    inline int read(){
    	re int s = 0, w = 1;
    	re char ch = getchar();
    	while(ch < '0' || ch > '9'){ ch = getchar(); if(ch == '-') w = -1; }
    	while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
    	return s * w;
    }
    int r[MAXN], n, m;
    void FFT(complex *f, int mode){
    	for(re int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
    	for(re int p = 2; p <= n; p <<= 1){
    	   re int len = p >> 1;
    	   re complex tmp(cos(PI / len), mode * sin(PI / len));
    	   for(re int l = 0; l < n; l += p){
    	      re complex w(1, 0);
    	      for(re int k = l; k < l + len; ++k){
    	      	 re complex t = w * f[len + k];
    	      	 f[len + k] = f[k] - t;
    	      	 f[k] = f[k] + t;
    	      	 w = w * tmp;
    	      }
    	   }
        }
    }
    inline double d(double x){
    	if(fabs(x) < 1e-9) return 0;
    	return x;
    }
    char s[MAXN];
    int *len = &n, now, flag, tmp;
    int main(){
    	while(scanf("%s", s + 1) != EOF){
    	int leng = strlen(s + 1); n = m = flag = 0; f = a; len = &n;
    	for(int i = 1; i <= leng; ++i){
    		if(s[i] >= '0' && s[i] <= '9') now = now * 10 + s[i] - '0';
    		if(s[i] == '^'){ flag = 1; tmp = now; now = 0; }
    		if(s[i] == '+' || s[i] == ')'){
    		  if(flag) f[now].x = tmp, *len = max(*len, now); 
    		  else f[0].x = now;
    		  flag = now = tmp = 0;
    	    }
    	    if(s[i] == '*') f = b, len = &m;
    	}
    	for(m += n, n = 1; n <= m; n <<= 1);
    	for(re int i = 1; i < n; ++i) r[i] = r[i >> 1] >> 1 | ((i & 1) * (n >> 1));
    	FFT(a, 1); FFT(b, 1);
    	for(re int i = 0; i < n; ++i) a[i] = a[i] * b[i];
    	FFT(a, -1);
    	for(int i = m; ~i; --i) 
    	   if(a[i].x > 1e-9){
    	   	  if(flag) printf("+");
    	      printf("%.0f", a[i].x / n, i);
    	      if(i) printf("a^%d", i);
    	      flag = 1;
    	   }
    	printf("
    ");
    	for(int i = 0; i < n; ++i) a[i].x = a[i].y = b[i].x = b[i].y = 0;
        }
    	return 0;
    }
    
  • 相关阅读:
    软工第1次阅读作业
    软工第0次作业
    第四次博客
    第三次博客
    第二次
    第一次博客
    提问回顾与个人总结
    软件工程结对作业
    软件工程第一次阅读作业
    软件工程第0次个人作业
  • 原文地址:https://www.cnblogs.com/Qihoo360/p/10368030.html
Copyright © 2011-2022 走看看