zoukankan      html  css  js  c++  java
  • Matlab源代码SSIM算法详细注释图像质量评价

    %%%%suggestion of usage
    
    function [mssim, ssim_map] = ssim(img1, img2, K, window, L)
    
    % ========================================================================
    % SSIM Index with automatic downsampling, Version 1.0
    % Copyright(c) 2009 Zhou Wang
    % All Rights Reserved.
    %
    % ----------------------------------------------------------------------
    % Permission to use, copy, or modify this software and its documentation
    % for educational and research purposes only and without fee is hereby
    % granted, provided that this copyright notice and the original authors'
    % names appear on all copies and supporting documentation. This program
    % shall not be used, rewritten, or adapted as the basis of a commercial
    % software or hardware product without first obtaining permission of the
    % authors. The authors make no representations about the suitability of
    % this software for any purpose. It is provided "as is" without express
    % or implied warranty.
    %----------------------------------------------------------------------
    %
    % This is an implementation of the algorithm for calculating the
    % Structural SIMilarity (SSIM) index between two images
    %
    % Please refer to the following paper and the website with suggested usage
    %
    % Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
    % quality assessment: From error visibility to structural similarity,"
    % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,
    % Apr. 2004.
    %
    % http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
    %
    % Note: This program is different from ssim_index.m, where no automatic
    % downsampling is performed. (downsampling was done in the above paper
    % and was described as suggested usage in the above website.)
    %
    % Kindly report any suggestions or corrections to zhouwang@ieee.org
    %
    %----------------------------------------------------------------------
    %
    %Input : (1) img1: the first image being compared
    % (2) img2: the second image being compared
    % (3) K: constants in the SSIM index formula (see the above
    % reference). defualt value: K = [0.01 0.03]
    % (4) window: local window for statistics (see the above
    % reference). default widnow is Gaussian given by
    % window = fspecial('gaussian', 11, 1.5);
    % (5) L: dynamic range of the images. default: L = 255
    %
    %Output: (1) mssim: the mean SSIM index value between 2 images.
    % If one of the images being compared is regarded as 
    % perfect quality, then mssim can be considered as the
    % quality measure of the other image.
    % If img1 = img2, then mssim = 1.
    % (2) ssim_map: the SSIM index map of the test image. The map
    % has a smaller size than the input images. The actual size
    % depends on the window size and the downsampling factor.
    %
    %Basic Usage:
    % Given 2 test images img1 and img2, whose dynamic range is 0-255
    %
    % [mssim, ssim_map] = ssim(img1, img2);
    %
    %Advanced Usage:
    % User defined parameters. For example
    %
    % K = [0.05 0.05];
    % window = ones(8);
    % L = 100;
    % [mssim, ssim_map] = ssim(img1, img2, K, window, L);
    %
    %Visualize the results:
    %
    % mssim %Gives the mssim value
    % imshow(max(0, ssim_map).^4) %Shows the SSIM index map
    %========================================================================
    
    
    if (nargin < 2 || nargin > 5) %参数个数小于2个或者大于5个,则退出
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    
    if (size(img1) ~= size(img2)) %对比的两幅图大小要一致,否则退出
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    
    [M, N] = size(img1); %将图1的大小赋值给M N
    
    if (nargin == 2) %参数为2时
    if ((M < 11) || (N < 11)) %图像长宽都不能小于11,否则退出
    mssim = -Inf;
    ssim_map = -Inf;
    return
    end
    window = fspecial('gaussian', 11, 1.5); %建立预定义的滤波算子。
    %为高斯低通滤波,有两个参数,hsize表示模板尺寸,默认值为[3 3],sigma为滤波器的标准值,单位为像素,默认值为0.5.
    K(1) = 0.01;	% default settings
    K(2) = 0.03;	%K L参数设置为最佳默认值
    L = 255; %设置L的默认值
    end
    
    if (nargin == 3) %参数为3个时,第3个参数为K
    if ((M < 11) || (N < 11))
    mssim = -Inf;
    ssim_map = -Inf;
    return
    end
    window = fspecial('gaussian', 11, 1.5); %获取滤波算子,类型为gaussian,11为窗口尺寸,1.5为标准差
    L = 255;
    if (length(K) == 2) %参数K为2个元素的数组,且都大于0
    if (K(1) < 0 || K(2) < 0)
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    else
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    end
    
    if (nargin == 4) %参数3为K,参数4为窗口大小
    [H, W] = size(window); %window参数类似ones(8)
    if ((H*W) < 4 || (H > M) || (W > N)) %窗口大小要求大于4或者长宽不小于图像的长宽
    mssim = -Inf;
    ssim_map = -Inf;
    return
    end
    L = 255;
    if (length(K) == 2) %判断K数组的大小
    if (K(1) < 0 || K(2) < 0)
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    else
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    end
    
    if (nargin == 5) %当后3个参数都设置时,其中L参数执行传入的参数
    [H, W] = size(window);
    if ((H*W) < 4 || (H > M) || (W > N))
    mssim = -Inf;
    ssim_map = -Inf;
    return
    end
    if (length(K) == 2)
    if (K(1) < 0 || K(2) < 0)
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    else
    mssim = -Inf;
    ssim_map = -Inf;
    return;
    end
    end
    
    
    img1 = double(img1);
    img2 = double(img2);
    
    % automatic downsampling
    f = max(1,round(min(M,N)/256)); %先选择行列两者中的最小值取整,再选择其中的最大值
    %downsampling by f
    %use a simple low-pass filter 
    if(f>1)
    lpf = ones(f,f); %初始化一个单位矩阵,用于归一化
    lpf = lpf/sum(lpf(:)); %归一化,除以单位矩阵的个数
    img1 = imfilter(img1,lpf,'symmetric','same'); %使用滤波函数对img1进行处理,lpf是归一化的滤波模板,
    %边界使用symmetric镜像反射填充边界 
    img2 = imfilter(img2,lpf,'symmetric','same');
    %%% 均值滤波
    img1 = img1(1:f:end,1:f:end); %向下隔点取样
    img2 = img2(1:f:end,1:f:end);
    end
    
    C1 = (K(1)*L)^2; %求取论文中C1的值
    C2 = (K(2)*L)^2; %求取论文中C2的值
    window = window/sum(sum(window)); %滤波器归一化操作。缺省的sum(x)就是竖向相加,求每列的和,结果是行向量
    
    mu1 = filter2(window, img1, 'valid'); %使用设定好的高斯低通滤波器window对img1进行滤波,结果保存在mu1中
    %mu1相当于论文中的Ux,即图像img1的均值
    mu2 = filter2(window, img2, 'valid'); %mu2相当于论文中的Uy,即图像img2的均值,点乘模板相加,因为window归一化了,所以是均值
    mu1_sq = mu1.*mu1; %矩阵运算,相当于img1均值的矩阵乘法平方
    mu2_sq = mu2.*mu2;
    mu1_mu2 = mu1.*mu2; %img1和img2均值的矩阵乘法平方
    sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; %协方差期望公式:sigma_x=E(X^2)-(EX)^2
    sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; %协方差期望公式:sigma_y=E(Y^2)-(EY)^2
    sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; %协方差期望公式:sigma_xy=E(XY)-(EX)*(EY)
    
    if (C1 > 0 && C2 > 0)
    ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
    else
    numerator1 = 2*mu1_mu2 + C1;
    numerator2 = 2*sigma12 + C2;
    denominator1 = mu1_sq + mu2_sq + C1;
    denominator2 = sigma1_sq + sigma2_sq + C2;
    ssim_map = ones(size(mu1));
    index = (denominator1.*denominator2 > 0);
    ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
    index = (denominator1 ~= 0) & (denominator2 == 0);
    ssim_map(index) = numerator1(index)./denominator1(index);
    end
    
    mssim = mean2(ssim_map);
    
    return
    

      

  • 相关阅读:
    U3D不同平台载入XML文件的方法——IOS MAC Android
    C++使用规范小记
    设置角色对象可见性
    编辑器菜单操作
    U3D资源动态加载异步方案探究
    Animation动画
    Unity3D失去焦点时继续渲染
    C#打开当前目录
    组件模式代码实践(C#版本)
    Unity3D批处理脚本
  • 原文地址:https://www.cnblogs.com/Qsir/p/5824639.html
Copyright © 2011-2022 走看看