zoukankan      html  css  js  c++  java
  • CF932GPalindrome Partition【PAM】

    正题

    题目链接:https://www.luogu.com.cn/problem/CF932G


    题目大意

    给出一个长度为\(n\)的字符串,将其分为\(k\)段(\(k\)为任意偶数),记为\(p\)。要求满足对于任意\(i\)都有\(p_i=p_{k-i+1}\)。求方案数。

    \(1\leq n\leq 10^6\)


    解题思路

    考虑将字符串化为\(S_1S_nS_2S_{n-1}S_3S_{n-2}...\)这样的形式,可以发现对于原本相同的段在这里就被表示为了一个偶回文子串。

    那么问题就变为了划分若干个偶回文子串。设\(f_i\)表示前\(i\)个的方案的话有一种比较简单的做法,建立\(PAM\)后求出每个前缀的所有偶回文后缀,然后暴力转移。

    但是这样的是\(O(n^2)\)的,时间复杂度不符合要求,考虑优化。对于一个回文串来说它的所有回文后缀就是它的\(border\)。而\(broder\)有一个性质就是所有\(broder\)的长度可以被划分成\(log\)个等差数列。

    我们可以在\(PAM\)上维护这些等差数列,记录\(top_i\)表示节点\(i\)所在的等差数列的顶部,然后每次使用\(top\)往上跳。加入新的\(x\)节点(或者覆盖以前的已经有的节点)的时候累计一下自己作为末尾时所在等差数列方案和就好了

    时间复杂度\(O(n\log n)\)


    code

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N=1e6+10,P=1e9+7;
    int n,cnt,pos[N],len[N],dis[N],fa[N],top[N],ch[N][26];
    char t[N],s[N];int f[N],g[N];
    int jump(int x,int p){
    	while(s[p-len[x]-1]!=s[p])x=fa[x];
    	return x;
    } 
    int Insert(int x,int p){
    	x=jump(x,p);
    	int c=s[p]-'a';
    	if(!ch[x][c]){
    		++cnt;len[cnt]=len[x]+2; 
    		int y=jump(fa[x],p);
    		fa[cnt]=ch[y][c];y=cnt;
    		dis[y]=len[y]-len[fa[y]];
    		if(dis[y]!=dis[fa[y]])top[y]=y;
    		else top[y]=top[fa[y]];ch[x][c]=y;
    	}
    	return ch[x][c];
    }
    int main()
    {
    	scanf("%s",t+1);n=strlen(t+1);
    	if(n&1)return puts("0")&0;
    	for(int i=1;i<=n;i+=2)s[i]=t[i/2+1];
    	for(int i=2;i<=n;i+=2)s[i]=t[n-i/2+1];
    	len[1]=-1;fa[0]=top[1]=cnt=1;
    	for(int i=1;i<=n;i++)
    		pos[i]=Insert(pos[i-1],i);
    	f[0]=1;
    	for(int i=1;i<=n;i++){
    		for(int x=pos[i];x;x=fa[top[x]]){
    			g[x]=f[i-len[top[x]]];
    			if(x!=top[x])(g[x]+=g[fa[x]])%=P;
    			if(!(i&1))(f[i]+=g[x])%=P;
    		}
    	}
    	printf("%d\n",f[n]);
    	return 0;	
    }
    
  • 相关阅读:
    Shapefile文件数据库操作ArcEngine +C#
    INewFeedBack接口ArcGlobe
    如何获取免费Aster GDem数据
    FUCK EFS!!!!!
    5种方法解除开机密码[转]
    blobtracking references[转]
    cvMatND
    二值图像相似性[转]
    OpenCV中打印CvMat的元素
    视觉&图像处理相关链接
  • 原文地址:https://www.cnblogs.com/QuantAsk/p/14464607.html
Copyright © 2011-2022 走看看