正题
题目链接:https://www.luogu.com.cn/problem/P6847
题目大意
(n)个点的一棵树上,每个时刻可以割掉一些边,一些节点上有果实表示如果在(d_i)时刻这个点恰好不与(1)联通,那么就可以获得(w_i)的价值。
(1leq n,kleq 10^5)
解题思路
设(f_{x,i})表示节点(x)在时刻(i)之前割掉时的最大权值那么相当与在儿子里面选一个最大的(f_{y,j}(jleq i))合并上来。
这是一个很经典的转移方式,和命运那题一样,直接用线段树合并维护就好了。
时间复杂度(O(nlog k))
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10;
ll n,m,k,rt[N],fa[N],d[N],w[N];
ll cnt,t[N<<5],lazy[N<<5],ls[N<<5],rs[N<<5];
void Downdata(int x){
if(!lazy[x])return;
if(ls[x])lazy[ls[x]]+=lazy[x],t[ls[x]]+=lazy[x];
if(rs[x])lazy[rs[x]]+=lazy[x],t[rs[x]]+=lazy[x];
lazy[x]=0;return;
}
void Change(ll &x,ll L,ll R,ll pos,ll val,ll z){
if(!x)x=++cnt;
if(L==R){t[x]=val+max(z,t[x]);return;}
ll mid=(L+R)>>1;Downdata(x);
if(pos<=mid)Change(ls[x],L,mid,pos,val,z);
else Change(rs[x],mid+1,R,pos,val,max(z,t[ls[x]]));
t[x]=max(t[ls[x]],t[rs[x]]);
return;
}
ll Merge(ll L,ll R,ll x,ll y,ll mx1,ll mx2){
if(!x||!y){
if(x)lazy[x]+=mx2,t[x]+=mx2;
if(y)lazy[y]+=mx1,t[y]+=mx1;
return x|y;
}
if(L==R){t[x]=max(t[x],mx1)+max(t[y],mx2);return x;}
ll mid=(L+R)>>1;Downdata(x);Downdata(y);
rs[x]=Merge(mid+1,R,rs[x],rs[y],max(mx1,t[ls[x]]),max(mx2,t[ls[y]]));
ls[x]=Merge(L,mid,ls[x],ls[y],mx1,mx2);
t[x]=max(t[ls[x]],t[rs[x]]);
return x;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=2;i<=n;i++)
scanf("%lld",&fa[i]);
for(ll i=1;i<=m;i++){
ll x;scanf("%lld",&x);
scanf("%lld%lld",&d[x],&w[x]);
}
for(ll x=n;x>=1;x--){
if(d[x])Change(rt[x],1,k,d[x],w[x],0);
if(fa[x])rt[fa[x]]=Merge(1,k,rt[fa[x]],rt[x],0,0);
}
printf("%lld
",t[rt[1]]);
return 0;
}