zoukankan      html  css  js  c++  java
  • NPU_ACM2018数据结构课程部分题目代码

    Water Problem

    #include <bits/stdc++.h>
    const int maxn = 1e5 + 7;
    using namespace std;
    int n, m, a[maxn], l, r;
    int main() {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
        for(int i = 2; i <= n; ++i) a[i] += a[i-1];
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d",&l,&r);
            printf("%d
    ", a[r]-a[l-1]);
        }
    }
    

    单点修改

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5 + 7;
    int n, m, x, y, opt;
    struct seg{int l, r, sum;} tree[maxn<<2];
    void build(int p, int l, int r) {
    	tree[p].l = l; tree[p].r = r; tree[p].sum = 0;
    	if(l == r) return;
    	int mid = (l + r) >> 1;
    	build(p<<1, l, mid);
    	build(p<<1|1, mid+1, r);
    }
    void add(int p, int x, int y) {
    	if(tree[p].l == tree[p].r) {
            tree[p].sum += y; return;
        }
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(x<=mid) add(p<<1, x, y);
        else add(p<<1|1, x, y);
        tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    }
    int ask(int p, int l, int r) {
    	if(l == tree[p].l && tree[p].r == r) return tree[p].sum;
    	int mid = (tree[p].l + tree[p].r) >> 1;
    	if(r <= mid) return ask(p<<1, l, r);
    	else if(l > mid) return ask(p<<1|1, l, r);
    	else return ask(p<<1, l, mid) + ask(p<<1|1, mid+1, r);
    }
    int main() {
    	scanf("%d %d", &n, &m);
    	build(1, 1, n);
        for(int i = 1; i <= n; ++i) scanf("%d",&x), add(1,i,x);
    	for(int i = 1; i <= m; ++i) {
            scanf("%d %d %d", &opt, &x, &y);
            if(opt) add(1, x, y);
            else printf("%d
    ", ask(1, x, y));
        }
    }
    

    区间修改

    #include <bits/stdc++.h>
    typedef long long ll;
    const int maxn = 1e5 + 7;
    using namespace std;
    int n, m, opt, l, r;
    ll a[maxn], x;
    struct seg{int l,r; ll sum,mx,tag;} tree[maxn<<2];
    void push_up(int p) {
        tree[p].mx = max(tree[p<<1].mx, tree[p<<1|1].mx);
        tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    }
    void push_down(int p) {
        if(tree[p].tag) {
            tree[p<<1].sum += 1LL*(tree[p<<1].r - tree[p<<1].l + 1)*tree[p].tag;
            tree[p<<1|1].sum += 1LL*(tree[p<<1|1].r - tree[p<<1|1].l + 1)*tree[p].tag;
            tree[p<<1].mx += tree[p].tag;
            tree[p<<1|1].mx += tree[p].tag;
            tree[p<<1].tag += tree[p].tag;
            tree[p<<1|1].tag += tree[p].tag;
            tree[p].tag = 0;
        }
    }
    void build(int p, int l, int r) {
        tree[p].l = l; tree[p].r = r;
        tree[p].sum = tree[p].tag = tree[p].mx = 0;
        if(l == r) {
            tree[p].mx = tree[p].sum = a[l]; return;
        }
        int mid = (l + r) >> 1;
        build(p<<1, l, mid), build(p<<1|1, mid+1, r);
        push_up(p);
    }
    void add(int p, int l, int r, ll x) {
        if(tree[p].l == l && tree[p].r ==r) {
            tree[p].sum += 1LL*(r-l+1)*x;
            tree[p].mx += x;
            tree[p].tag += x;
            return;
        }
        int mid = (tree[p].l + tree[p].r) >> 1;
        push_down(p);
        if(r <= mid) add(p<<1, l, r, x);
        else if(l > mid) add(p<<1|1, l, r, x);
        else add(p<<1, l, mid, x), add(p<<1|1, mid+1, r, x);
        push_up(p);
    }
    ll ask_mx(int p, int l, int r) {
        if(l == tree[p].l && tree[p].r == r) return tree[p].mx;
        push_down(p);
        ll ans = 0;
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) ans = ask_mx(p<<1, l, r);
        else if(l > mid) ans = ask_mx(p<<1|1, l, r);
        else ans = max(ask_mx(p<<1, l, mid), ask_mx(p<<1|1, mid+1, r));
        push_up(p);
        return ans;
    }
    ll ask_sum(int p, int l, int r) {
        if(tree[p].l == l && tree[p].r == r) return tree[p].sum;
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) return ask_sum(p<<1, l, r);
        else if(l > mid) return ask_sum(p<<1|1, l, r);
        else return ask_sum(p<<1, l, mid) + ask_sum(p<<1|1, mid+1, r);
    }
    int main() {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]);
        build(1, 1, n);
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &opt, &l, &r);
            if(opt == 1) {//max
                printf("%lld
    ", ask_mx(1, l, r));
            }
            else if(opt == 2) {//sum
                printf("%lld
    ", ask_sum(1, l, r));
            }
            else {// add
                scanf("%lld", &x);
                add(1, l, r, x);
            }
        }
    }
    

    差分

    #include <bits/stdc++.h>
    typedef long long ll;
    const int maxn = 5e7 + 7;
    using namespace std;
    int n, m, l, r;
    ll a[maxn], x;
    int main() {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; ++i) scanf("%lld", &a[i]);
        for(int i = n; i >= 2; --i) a[i] -= a[i-1];
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%lld", &l, &r, &x);
            a[l]+=x, a[r+1]-=x;
        }
        for(int i = 2; i <= n; ++i) a[i] += a[i-1];
        for(int i = 1; i <= n; ++i) printf("%lld ",a[i]);puts("");
    }

    BZOJ1798区间加乘

    #include <bits/stdc++.h>
    typedef unsigned long long ll;
    const int maxn = 1e5 + 7;
    using namespace std;
    int n, m, opt, l, r;
    ll a[maxn], x, P;
    struct seg{int l,r; ll sum,taga,tagm;} tree[maxn<<2];
    void push_up(int p) {
        tree[p].sum = (tree[p<<1].sum%P + tree[p<<1|1].sum%P)%P;
    }
    void push_down(int p) {
        tree[p<<1].tagm = ((tree[p<<1].tagm%P) * tree[p].tagm%P)%P;
        tree[p<<1].taga = ((tree[p<<1].taga%P) * tree[p].tagm%P)%P;
        tree[p<<1].taga = (tree[p<<1].taga%P + tree[p].taga%P)%P;
        tree[p<<1].sum = (((tree[p<<1].sum%P)*tree[p].tagm%P)%P + (tree[p].taga%P*(tree[p<<1].r-tree[p<<1].l+1LL))%P)%P;
    
        tree[p<<1|1].tagm = ((tree[p<<1|1].tagm%P) * tree[p].tagm%P)%P;
        tree[p<<1|1].taga = ((tree[p<<1|1].taga%P) * tree[p].tagm%P)%P;
        tree[p<<1|1].taga = (tree[p<<1|1].taga%P + tree[p].taga%P)%P;
        tree[p<<1|1].sum = (((tree[p<<1|1].sum%P)*tree[p].tagm%P)%P + (tree[p].taga%P*(tree[p<<1|1].r-tree[p<<1|1].l+1LL)%P)%P)%P;
    
        tree[p].taga = 0, tree[p].tagm = 1;
    }
    void build(int p, int l, int r) {
        tree[p].l = l; tree[p].r = r;
        tree[p].sum = tree[p].taga = 0; tree[p].tagm = 1;
        if(l == r) {
            tree[p].sum = a[l]; return;
        }
        int mid = (l + r) >> 1;
        build(p<<1, l, mid), build(p<<1|1, mid+1, r);
        push_up(p);
    }
    void add(int p, int l, int r, ll x) {
        if(tree[p].l == l && tree[p].r ==r) {
            tree[p].taga = (tree[p].taga + x%P)%P;
            tree[p].sum = (tree[p].sum + ((x%P)*(r-l+1LL))%P)%P;
            return;
        }
        int mid = (tree[p].l + tree[p].r) >> 1;
        push_down(p);
        if(r <= mid) add(p<<1, l, r, x);
        else if(l > mid) add(p<<1|1, l, r, x);
        else add(p<<1, l, mid, x), add(p<<1|1, mid+1, r, x);
        push_up(p);
    }
    void mul(int p, int l, int r, ll x) {
        if(tree[p].l == l && tree[p].r ==r) {
            tree[p].taga = ((tree[p].taga%P)*x%P)%P;
            tree[p].tagm = ((tree[p].tagm%P)*x%P)%P;
            tree[p].sum = ((tree[p].sum%P)*x%P)%P;
            return;
        }
        int mid = (tree[p].l + tree[p].r) >> 1;
        push_down(p);
        if(r <= mid) mul(p<<1, l, r, x);
        else if(l > mid) mul(p<<1|1, l, r, x);
        else mul(p<<1, l, mid, x), mul(p<<1|1, mid+1, r, x);
        push_up(p);
    }
    ll ask(int p, int l, int r) {
        if(tree[p].l == l && tree[p].r == r) return tree[p].sum%P;
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) return ask(p<<1, l, r)%P;
        else if(l > mid) return ask(p<<1|1, l, r)%P;
        else return ((ask(p<<1, l, mid)%P + ask(p<<1|1, mid+1, r))%P)%P;
    }
    int main() {
        scanf("%d%lld", &n, &P);
        for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]);
        build(1, 1, n);
        scanf("%d", &m);
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &opt, &l, &r);
            if(opt == 1) {
                scanf("%lld", &x);
                mul(1, l, r, x);
            }
            else if(opt == 2) {
                scanf("%lld", &x);
                add(1, l, r, x);
            }
            else if(opt == 3)
                printf("%lld
    ", ask(1, l, r));
        }
    }
    
    //10 1000000000
    //1 1 1 1 1
    //1 1 1 1 1
    //20
    //2 5 10 478
    //1 3 5 705
    //3 2 8
    
    //340543
    

    HDU4027

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    typedef unsigned long long ll;
    const int maxn = 1e6 + 7;
    using namespace std;
    int K, n, m, opt, l, r;
    ll a[maxn], s[maxn];
    struct seg{int l,r; ll sum;} tree[maxn<<2];
    void push_up(int p) {
        tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    }
    void build(int p, int l, int r) {
        tree[p].l = l; tree[p].r = r;
        if(l == r) {
            tree[p].sum = a[l]; return;
        }
        int mid = (l + r) >> 1;
        build(p<<1, l, mid), build(p<<1|1, mid+1, r);
        push_up(p);
    }
    ll ask(int p, int l, int r) {
        if(tree[p].l == l && tree[p].r == r) return tree[p].sum;
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) return ask(p<<1, l, r);
        else if(l > mid) return ask(p<<1|1, l, r);
        else return ask(p<<1, l, mid) + ask(p<<1|1, mid+1, r);
    }
    void sq(ll &x) {
        ll t = sqrt(x);
        while(t*t<=x)++t;
        x = t-1;
    }
    void decr(int p, int l, int r) {
        if(ask(1,l,r)<=(r-l+1))return;
        if(tree[p].l == tree[p].r) {
            sq(tree[p].sum);
            return;
        }
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) decr(p<<1, l, r);
        else if(l > mid) decr(p<<1|1, l, r);
        else decr(p<<1,l,mid),decr(p<<1|1,mid+1,r);
        push_up(p);
    }
    int main() {
        while(scanf("%d", &n)!=EOF) {
            for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]);
            build(1, 1, n);
            scanf("%d", &m);
            printf("Case #%d:
    ",++K);
            for(int i = 1; i <= m; ++i) {
                scanf("%d%d%d", &opt, &l, &r); if(l > r) swap(l, r);
                if(opt) printf("%lld
    ", ask(1, l, r));
                else decr(1, l, r);
            }
            puts("");
        }
        return 0;
    }
    

    区间加等差数列区间求和

    #include <bits/stdc++.h>
    typedef long long ll;
    const int maxn = 1e5 + 7;
    using namespace std;
    int n, m, opt, l, r;
    ll a[maxn], x, P, a0, d;
    struct seg{int l,r; ll sum,taga,tagd;} tree[maxn<<2];
    void push_up(int p) {
        tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    }
    void push_down(int p) {
        ll tn = (tree[p<<1].r - tree[p<<1].l + 1), a0 = tree[p].taga, d = tree[p].tagd;
        tree[p<<1].taga += a0;
        tree[p<<1].tagd += d;
        tree[p<<1].sum += 1LL*(a0*tn + tn*(tn-1LL)/2LL*d);
    
        a0 = a0 + d*tn;
        tn = (tree[p<<1|1].r - tree[p<<1|1].l + 1);
        tree[p<<1|1].taga += a0;
        tree[p<<1|1].tagd += d;
        tree[p<<1|1].sum += 1LL*(a0*tn + tn*(tn-1LL)/2LL*d);
    
        tree[p].taga = tree[p].tagd = 0;
    }
    void build(int p, int l, int r) {
        tree[p].l = l;
        tree[p].r = r;
        tree[p].taga = tree[p].tagd = 0;
        if(l == r) {
            tree[p].sum = a[l]; return;
        }
        int mid = (l + r) >> 1;
        build(p<<1, l, mid), build(p<<1|1, mid+1, r);
        push_up(p);
    }
    void add(int p, int l, int r, ll a0, ll d) {
        if(tree[p].l == l && tree[p].r == r) {
            tree[p].taga += a0;
            tree[p].tagd += d;
            ll tn = (r - l + 1);
            tree[p].sum += 1LL*(a0*tn + tn*(tn-1)/2LL*d);
            return;
        }
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) add(p<<1, l, r, a0, d);
        else if(l > mid) add(p<<1|1, l, r, a0, d);
        else {
            add(p<<1, l, mid, a0, d);
            ll a1 = a0 + 1LL*(mid-l+1LL)*d;
            add(p<<1|1, mid+1, r, a1, d);
        }
        push_up(p);
    }
    ll ask(int p, int l, int r) {
        if(tree[p].l == l && tree[p].r == r){
            return tree[p].sum;
        }
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) return ask(p<<1, l, r);
        else if(l > mid) return ask(p<<1|1, l, r);
        else return ask(p<<1, l, mid) + ask(p<<1|1, mid+1, r);
    }
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]);
        build(1, 1, n);
        scanf("%d", &m);
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &opt, &l, &r);
            if(opt) {
                scanf("%lld%lld", &a0,&d);
                add(1, l, r, a0, d);
            }
            else
                printf("%lld
    ", ask(1, l, r));
        }
    }
    //5
    //0 0 0 0 0
    //555
    //1 2 4 2 2
    //0 2 2
    //0 3 3
    //0 4 4
    //1 1 3 1 1
    //0 1 1
    //0 2 2
    //0 3 3
    

    区间加等比数列区间求和

    #include <bits/stdc++.h>
    typedef unsigned long long ll;
    const int maxn = 1e5 + 7;
    using namespace std;
    int n, m, opt, l, r;
    ll a[maxn], x, P, a0, q0, q[maxn], sq[maxn];
    struct seg{int l,r; ll sum,tag;} tree[maxn<<2];
    void push_up(int p) {
        tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    }
    void push_down(int p) {
        ll tn = (tree[p<<1].r - tree[p<<1].l + 1), a0 = tree[p].tag;
        tree[p<<1].tag += a0;
        tree[p<<1].sum += a0*sq[tn-1];
    
        a0 = a0*q[tn]; tn = (tree[p<<1|1].r - tree[p<<1|1].l + 1);
        tree[p<<1|1].tag += a0;
        tree[p<<1|1].sum += a0*sq[tn-1];
    
        tree[p].tag = 0;
    }
    void build(int p, int l, int r) {
        tree[p].l = l;tree[p].r = r;
        tree[p].tag = 0;
        if(l == r) {
            tree[p].sum = a[l]; return;
        }
        int mid = (l + r) >> 1;
        build(p<<1, l, mid), build(p<<1|1, mid+1, r);
        push_up(p);
    }
    void add(int p, int l, int r, ll a0) {
        if(tree[p].l == l && tree[p].r == r) {
            tree[p].tag += a0;
            ll tn = (r-l+1);
            tree[p].sum += a0*sq[tn-1];
            return;
        }
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) add(p<<1, l, r, a0);
        else if(l > mid) add(p<<1|1, l, r, a0);
        else {
            add(p<<1, l, mid, a0);
            ll a1 = a0*q[mid-l+1];
            add(p<<1|1, mid+1, r, a1);
        }
        push_up(p);
    }
    ll ask(int p, int l, int r) {
        if(tree[p].l == l && tree[p].r == r){
            return tree[p].sum;
        }
        push_down(p);
        int mid = (tree[p].l + tree[p].r) >> 1;
        if(r <= mid) return ask(p<<1, l, r);
        else if(l > mid) return ask(p<<1|1, l, r);
        else return ask(p<<1, l, mid) + ask(p<<1|1, mid+1, r);
    }
    int main() {
        scanf("%d%lld", &n,&q0); q[0]=1;
        for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]),q[i]=q[i-1]*q0;
        sq[0]=q[0]; for(int i = 1; i <= n; ++i) sq[i] = sq[i-1] + q[i];
        build(1, 1, n);
        scanf("%d", &m);
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &opt, &l, &r);
            if(opt) {
                scanf("%lld", &a0);
                add(1, l, r, a0);
            }
            else
                printf("%lld
    ", ask(1, l, r));
        }
    }
    

     BZOJ2241

    #include <bits/stdc++.h>
    using namespace std;
    int ans=1e9+7;
    int n,m,mp[407][407],a[407][407],sum;
    int solve(int x,int y){
        if(sum%(x*y))return 0;
        for(int i=0;i<=n;++i)
            for(int j=0;j<=m;++j)a[i][j]=mp[i][j];
    
        for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                if(a[i][j]<0)return 0;
                if(i+x-1<=n&&j+y-1<=m){
                    int num=a[i][j];
                    a[i][j]-=num;
                    a[i+x][j]+=num;
                    a[i][j+y]+=num;
                    a[i+x][j+y]-=num;
                }
                if(a[i][j]>0)return 0;
            }
        }
        ans=min(ans,sum/x/y);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;++i)
            for(int j=1;j<=m;++j)scanf("%d",&mp[i][j]),sum+=mp[i][j];
        for(int i=n;i;--i)
            for(int j=m;j;--j)
                mp[i][j]-=mp[i-1][j];
        for(int i=n;i;--i)
            for(int j=m;j;--j)
                mp[i][j]-=mp[i][j-1];
        for(int C=1;C<=n;++C)
        for(int L=1;L<=m;++L){
            solve(C,L);
        }
        printf("%d
    ",ans);
        return 0;
    }
    

    EOJ3536

    #include <cstdio>
    #include <cstring>
    #define add(l,r,x)(sc[l]+=x,sc[r+1]-=x)
    typedef long long ll;
    inline ll read(){
        char c=getchar();ll x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    using namespace std;
    ll n;
    ll sc[200003];
    int main()
    {
        n=read();
        if(n==1){
            puts("1");
        }
        else if(n==2){
            puts("3");
            puts("7");
        }
        else {
            if(n%2){
                ll l=n/2+1,r=n/2+1;
                add(l,r,1LL);
                while(1){
                    ll x=r-l+1+2;
                    ll tmp;
                    tmp = 4LL*(x-1)*(x-1)+x+1LL;
                    add(l,r,tmp);
                    --l;++r;
                    add(l,l,x*(x+1)/2LL);
                    add(r,r,(5LL*x-3)*x/2LL);
                    if(l==1)break;
                }
            }
            else{
                ll l=n/2,r=n/2+1;
                add(l,l,3LL);
                add(r,r,7LL);
                while(1){
                    ll x=r-l+1+2,tmp;
                    tmp = 4LL*(x-1)*(x-1)+x+1LL;
                    add(l,r,tmp);
                    --l;++r;
                    add(l,l,x*(x+1LL)/2);
                    add(r,r,(5LL*x-3)*x/2LL);
                    if(l==1)break;
                }
            }
            ll tmp=0;
            for(int i=1;i<=n;++i){
                tmp+=sc[i];
                printf("%lld
    ",tmp);
            }
        }
        return 0;
    }

    区间加等差数列维护最大值(BZOJ 2388: 旅行规划 [分块 凸包 等差数列])

    发现上课的时候,说的那个证明太假了。。。于是这里稍微严谨点,下面证明:上凸包加等差数列,不改变原凸包上的点这一结论。

    我们考虑一种特殊的情况,三个相邻的点,即相邻两点x坐标差为1,且左右两个点在上凸包上,中间的点不在凸包上。设他们的y坐标分别为y1, y2, y3,那么根据凸包的性质有:(y2-y1)/1 < (y3-y1)/2, 即1,2两点的斜率小于1,3两点的斜率,现在给整个序列从左到右加上,a0,a0+d,a0+2*d,现在只需证:((y2+a0+d)-(y1+a0))/1 < ((y3+a0+2*d)-(y1+a0))/2,化简一下得到:(y2-y1)/1 < (y3-y1)/2,这个就是已知,于是得证。

    考虑左右两个点之间有n个点不在上凸包上,那么枚举中间的点,用同上的方法,可以分别证明,所有中间的点都不在凸包上。

    现在如果凸包上有多个点,我们就枚举相邻的凸包上的点,可以分别证明,所有两点之间的点都不在凸包上。

    现在,只需证明,原先凸包上的点都在新凸包上就行了,跟上面一样,我们,考虑,凸包上相邻的三个点,设他们的y坐标为z1, z2, z3, 那么根据凸包的性质,有:(z2-z1) > (z3-z2),给序列加上等差数列,易证((z2+a0+d)-(z1+a0)) > ((z3+a0+2*d)-(z2+a0+d)),于是得证。枚举中间的点,可以得到凸包上,任意相邻的3个点依然在凸包上,那么可以得到,原凸包上所有点在加了等差数列后,依然在新凸包上,得证。

    #include <bits/stdc++.h>
    #define pb(x) push_back(x)
    typedef long long ll;
    const int maxn = 1e5 + 7;
    using namespace std;
    struct point{
        ll x,y;
        point(){} point(ll a, ll b) {x=a,y=b;}
    }b[maxn], p[maxn];
    int cc;
    ll xmul(point A,point B,point C) {
        return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
    }
    vector<point> v[maxn];
    int n, m, x, y, tp;
    ll a[maxn], a0, d;
    int l[maxn], r[maxn], belong[maxn], num, B;
    ll taga[maxn], tagd[maxn];
    void makpt(int L, int R) {
        cc = 0; for(int i = L; i <= R; ++i) b[cc] = point(cc, a[i]), ++cc;
    }
    void adw() {
        tp=0;
        for(int i=0;i<cc;i++) {
            while(tp > 1 && xmul(p[tp-2], p[tp-1], b[i]) > 0) --tp;
            p[tp++] = b[i];
        }
    }
    void tuk(int L, int R, vector<point> &v) {
        makpt(L, R), adw();
        v.clear(); for(int i = 0; i < tp; ++i) v.pb(p[i]);
    }
    void build() {
        B = sqrt(n);
        num = n/B; if(n%B) ++num;
        for(int i = 1; i <= n; ++i) belong[i] = (i-1)/B+1;
        for(int i = 1; i <= num; ++i) l[i] = (i-1)*B+1, r[i] = i*B, taga[i]=tagd[i]=0;
        r[num] = n;
        for(int i = 1; i <= num; ++i) tuk(l[i], r[i], v[i]);
    }
    void push_down(int x) {
        for(int i = l[x]; i <= r[x]; ++i, taga[x]+=tagd[x]) a[i]+=taga[x];
        taga[x] = tagd[x] = 0;
    }
    void add(int L, int R, ll a0, ll d) {
        if(R-L+1 <= B) {
            push_down(belong[L]);push_down(belong[R]);
            for(int i = L; i <= R; ++i, a0+=d) a[i]+=a0;
            tuk(l[belong[L]], r[belong[L]], v[belong[L]]);
            tuk(l[belong[R]], r[belong[R]], v[belong[R]]);
            return;
        }
        push_down(belong[L]);
        for(int i = L; i <= r[belong[L]]; ++i, a0+=d) a[i]+=a0;
        tuk(l[belong[L]], r[belong[L]], v[belong[L]]);
    
        for(int i = belong[L]+1; i <= belong[R]-1; ++i) tagd[i]+=d, taga[i]+=a0, a0+=(r[i]-l[i]+1)*d;
    
        push_down(belong[R]);
        for(int i = l[belong[R]]; i <= R; ++i, a0+=d) a[i]+=a0;
        tuk(l[belong[R]], r[belong[R]], v[belong[R]]);
    }
    ll solve(int x, ll a0, ll d) {
        int l = 0, r = v[x].size() - 1, mid, midmid;
        while(l + 3 < r) {
            mid = (l + r) >> 1; midmid = (mid + r) >> 1;
            ll H1 = v[x][mid].y + a0 + v[x][mid].x*d;
            ll H2 = v[x][midmid].y + a0 + v[x][midmid].x*d;
            if(H1 <= H2) l = mid;
            else r = midmid;
        }
        ll ans = 0;
        for(int i = l; i <= r; ++i) ans = max(ans, v[x][i].y + a0 + v[x][i].x*d);
        return ans;
    }
    ll ask(int L, int R) {
        ll ans = 0;
        if(R-L+1 <= B) {
            push_down(belong[L]);push_down(belong[R]);
            for(int i = L; i <= R; ++i) ans = max(ans, a[i]);
            tuk(l[belong[L]], r[belong[L]], v[belong[L]]);
            tuk(l[belong[R]], r[belong[R]], v[belong[R]]);
            return ans;
        }
        push_down(belong[L]);
        for(int i = L; i <= r[belong[L]] && i <= R; ++i) ans = max(ans, a[i]);
        tuk(l[belong[L]], r[belong[L]], v[belong[L]]);
        for(int i = belong[L]+1; i <= belong[R]-1; ++i) ans = max(ans, solve(i, taga[i], tagd[i]));
        push_down(belong[R]);
        for(int i = max(l[belong[R]],L); i <= R; ++i) ans = max(ans, a[i]);
        tuk(l[belong[R]], r[belong[R]], v[belong[R]]);
        return ans;
    }
    
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%lld", &a[i]);
        build();
        scanf("%d", &m);
        for(int i = 1; i <= m; ++i) {int opt, L, R;
            scanf("%d%d%d", &opt, &L, &R);
            if(opt) {
                scanf("%lld%lld", &a0, &d);
                add(L, R, a0, d);
            }
            else
                printf("%lld
    ", ask(L, R));
        }
    }
    //5
    //2 1 3 2 5
    //555
    //1 1 4 2 2
    //1 1 2 3 3
    //0 1 2
    

    找到题了,不过是权限题。。。

  • 相关阅读:
    C#命名约定:PascalCase和camelCase
    Windows8 App 四大名著完整本 隐私保护声明
    C#-编码习惯
    [转]C#之Console.Write()和Console.Read()及Console.Readline()的问题
    通过JavaScript动态输入计算
    在VS2008中加入ExtJS智能提示—>(方法一)
    在VS2008中加入ExtJS智能提示—>(方法二)
    (一)javascript面向对象:(1)类
    上证指数波浪分析2013/03/12
    Springsecurity源码Filter之HeaderWriterFilter(十二)
  • 原文地址:https://www.cnblogs.com/RRRR-wys/p/9022005.html
Copyright © 2011-2022 走看看