2018 ACM-ICPC World Finals - Beijing
A. Catch the Plane
(dp[v_i,t_i])表示时刻(t_i)在(v_i)点,到达终点的最大概率,那么转移方程为:
(dp[(v_i,t_i)] = max(P_{ij}*dp[(v_{j+1},t_{j+1})] + (1-Pij)*dp[(v_{i+1},t_{i+1})]))
(dp[(v_i,t_i)] = max(dp[v_{i+1},t_{i+1}]))
其中((v_i,t_i))的一个后继状态为((v_j,t_j))两个状态之间的转移概率为(P_{ij}),第一种转移:沿(P_{ij})这个方向转移,以及继续留在这个点等待下次转移(((v_{i+1},t_{i+1}))为同一位置下与(t_i)最接近的下一个时间);第二种转移是:直接选择继续等待的概率。想出这些后,以为可以愉快的ac了。然而调到早上7点。。。才弄好
- 问题一:%I64d读1e18,蜜汁爆了,换了几个编译器才发现。。。
- 问题二:为简化代码省略了讨论,导致后面一个点wa
- 问题三:起点和终点要单独加进去,导致后面一个点wa
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long double LD;
typedef unsigned long long ll;
const int N = 5e6 + 100;
using namespace std;
struct node {
int x; ll t;
node(){}node(int a,ll b) {x=a,t=b;}
bool operator < (const node a) const {
if(t==a.t) return x<a.x;
return t < a.t;
}
};
bool cmp(node a,node b) {
if(a.x==b.x) return a.t < b.t;
return a.x < b.x;
}
bool cmp0(node a,node b) {
if(a.t==b.t) return a.x > b.x;
return a.t < b.t;
}
vector<node> v;
map<node,int> id;
node fid[N];
int cnt;
int nxt[N];
LD dp[N];
vector< pair<int,LD> > E[N];
void nwnode(node a) {
if(id[a]!=0) return;
++cnt;
fid[cnt] = a;
id[a] = cnt;
}
void add(int a,int b,LD p){
E[a].pb(make_pair(b,p));
}
int n,m;
ll k;
int main() {int f=0;
ll MX=0,MN=1000000000000000002LL;
scanf("%d%d%llu",&m,&n,&k);
rep(i,1,m) {int a,b;ll s,t; double p;
scanf("%d %d %llu %llu %lf",&a,&b,&s,&t,&p);
if(t<=k){
nwnode(node(a,s));
nwnode(node(b,t));
add(id[node(a,s)],id[node(b,t)],(LD)p);
v.pb(node(a,s));
v.pb(node(b,t));
if(b == 1LL) {
dp[id[node(b,t)]] = 1.0;
MX = max(t,MX);
}
if(a==0){
if(!f)MN=t;
else MN=min(MN,t);
f=1;
}
}
}
nwnode(node(1,MX));
nwnode(node(1,k));
nxt[id[node(1,MX)]] = id[node(1,k)];
dp[id[node(1,k)]] = 1.0;
v.pb(node(1,k));
add(id[node(1,MX)],id[node(1,k)],1.0);
nwnode(node(0,0));
v.pb(node(0,0));
nxt[id[node(0,0)]] = id[node(0,MN)];
add(id[node(0,0)],id[node(0,MN)],1.0);
sort(v.begin(),v.end(),cmp);
for(int i=v.size()-2;i>=0;--i) {
if(v[i].x==v[i+1].x){
if(v[i].t == v[i+1].t) nxt[id[v[i]]] = nxt[id[v[i+1]]];
else nxt[id[v[i]]] = id[v[i+1]];
}
}
sort(v.begin(),v.end(),cmp0);
for(int i=v.size()-1;i>=0;--i) if(dp[id[v[i]]]==0){
LD mx = 0;int t = id[v[i]];
for(int j=0;j<E[t].size();++j) {
if(fid[nxt[E[t][j].first]].x == fid[E[t][j].first].x && fid[nxt[t]].x == fid[t].x && dp[nxt[t]]!=0 && dp[nxt[E[t][j].first]]!=0 )
mx = max(mx, E[t][j].second*dp[nxt[E[t][j].first]] + (1.0-E[t][j].second)*dp[nxt[t]]);
else if(fid[nxt[E[t][j].first]].x == fid[E[t][j].first].x && dp[nxt[E[t][j].first]]!=0)
mx = max(mx, E[t][j].second*dp[nxt[E[t][j].first]]);
else if(fid[nxt[t]].x == fid[t].x && dp[nxt[t]]!=0)
mx = max(mx, (1.0-E[t][j].second)*dp[nxt[t]]);
}
if(fid[nxt[t]].x == fid[t].x)
mx = max(mx, dp[nxt[t]]);
dp[t] = mx;
}
printf("%.10f
",(double)dp[id[node(0,0)]]);
return 0;
}
B. Comma Sprinkler
这题没什么难度,把单词取出来直接搜索即可。
#include <bits/stdc++.h>
#define pb push_back
typedef long long ll;
const int N = 1000100;
using namespace std;
string s, word[N];
int cnt;
void chai(string s) {
int n = s.size();
cnt = 1;
for(int i=0;i<n;++i) {
if(s[i]==' '){
word[cnt] += ' ';
++cnt;
}
else
word[cnt]+=s[i];
}
}
map< string,vector<string> > pre,last;
string delco(string s) {
string t;t.clear();
for(auto c: s) if(c>='a'&&c<='z') t+=c;
return t;
}
int iscolst(string s) {
int t = s.size()-1;
while(t>=0){
if(s[t]==',')return 1;
--t;
}
return 0;
}
int isbiaolst(string s) {
int t = s.size()-1;
while(t>=0){
if(s[t]=='.'||s[t]==',')return 1;
--t;
}
return 0;
}
map<string,bool> vispre,vislst;
void X(string s);
void Y(string s);
void X(string s) {
vislst[s] = 1;
for(int x=0;x<last[s].size();++x) if(!vispre[last[s][x]]) Y(last[s][x]);
}
void Y(string s) {
vispre[s] = 1;
for(int x=0;x<pre[s].size();++x) if(!vislst[pre[s][x]]) X(pre[s][x]);
}
string update(string s) {
s+=',';
int t=s.size()-1;
swap(s[t],s[t-1]);
return s;
}
int main() {
getline(cin,s); chai(s);
for(int i=2;i<=cnt;++i) if(!isbiaolst(word[i-1])){
pre[delco(word[i])].pb(delco(word[i-1]));
}
for(int i=1;i<cnt;++i) if(!isbiaolst(word[i])){
last[delco(word[i])].pb(delco(word[i+1]));
}
for(int i=1;i<cnt;++i) {
string t = delco(word[i]);
if(!vislst[t]&&iscolst(word[i]))X(t);
}
for(int i=2;i<=cnt;++i) {
string t=delco(word[i]);
if(!vispre[t]&&iscolst(word[i-1])) Y(t);
}
for(int i=1;i<=cnt;++i) {
string t = delco(word[i]);
if(vislst[t]&&!isbiaolst(word[i]))
cout << update(word[i]);
else
cout << word[i];
}puts("");
return 0;
}
F. Go with the Flow
把单词的长度记录下来,模拟放单词,把所有位置上是空格的位置按从上到下存起来。顺序dp求出每个位置向上最长走多远,dp过程中取最大值即可,这样复杂度与空格数成正比,看大佬代码学习了一下,巧妙地解决了dp数组的开法用一维存,这样空间就不随着宽度变化。一开始写的暴力bfs炸的妥妥的。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define PII pair<int,int>
#define MP make_pair
#define fr first
#define sc second
typedef long long ll;
const int N = 5600;
using namespace std;
int n,L[N],len;
char s[88];
PII A[N];
int cnt,f[N*188];
void cal_A(int w) {
int x=1,y=0;cnt=0;
rep(j,1,n) {
if(y+L[j]<=w){
if(y)A[++cnt]=MP(x,y);
y+=L[j]+1;
}
else {
++x;
y=L[j]+1;
}
}
}
int cal_id(int x,int y,int m) {
if(x<1)return 0;
if(y<1||y>m)return 0;
return (x-1)*m + y;
}
int main() {
int MX = 0;
scanf("%d",&n);
for(int i=1;i<=n;++i) {
scanf(" %s",s);
L[i]=strlen(s);
MX = max(MX,L[i]);
len += L[i];
}
len += (n-1);
int ans=0,ans1=0,tmp;
rep(i,MX,len) {
cal_A(i);tmp = 0;
rep(j,1,cnt){
int x=A[j].fr, y=A[j].sc;
f[cal_id(x,y,i)] = max(f[cal_id(x-1,y-1,i)],f[cal_id(x,y,i)]);
f[cal_id(x,y,i)] = max(f[cal_id(x-1,y,i)],f[cal_id(x,y,i)]);
f[cal_id(x,y,i)] = max(f[cal_id(x-1,y+1,i)],f[cal_id(x,y,i)]);
++f[cal_id(x,y,i)];
tmp = max(tmp,f[cal_id(x,y,i)]);
}
if(tmp>ans){
ans=tmp;
ans1=i;
}
rep(j,1,cnt)f[cal_id(A[j].fr,A[j].sc,i)]=0;
}
printf("%d %d
",ans1,ans);
return 0;
}
K. Wireless is the New Fiber
贪心,首先答案是一棵树,既有n-1条边,所以要减少的总边数固定,所以我们尽量要改变度数大的点,换一句话一定先满足分叉少的。现在考虑如何满足,注意到度数为1的点是很特殊的,我们一定要先满足他们,并且最好他们不互相连接,那就把他们接在其他度数较小的点上,显然最好不接满。我们已经确定,如果有度为1的点,一定要先满足它,那么考虑如何把度非1的点转换为度为1的点,显然就是把度数为1的点接上去使他恰好多余一个位置,这些点组成的集合便是一个新的度为1的点,如此反复到无法产生新的度为1的点集。接下来我们仍然优先满足度数小的点,先把所有的1接上去,剩下的位置怎么办,我用度数最大的点接上去,把他们当作度数为1的点,为什么?因为这些点的度数最大,可以尽可能的把减少的边用在他们身上,重复上述操作,直到不足以产生新的度数为1的点集。最后把剩余的点全部加到当前节点上。如果最终有多个的度数为1的点集,那把他们任意连成一棵树树即可。这题的贪心,我之前一直在胡写,也没证明出来做法的正确性。。GG。。。。膜了大佬的写法。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define pb push_back
typedef long long ll;
const int N = 10000 + 10;
using namespace std;
int n,m,d[N];
vector<int> G[N];
void add(int u,int v) {G[u].pb(v);}
struct node {
int id,d;
node(){}node(int a,int b){id=a,d=b;}
}a[N];
int b[N];
int cnt,cnt0;
bool cmp(node a,node b) {return a.d < b.d;}
vector<int> v;
int main() {
scanf("%d%d",&n,&m);
rep(i,1,m) {int x,y;
scanf("%d%d",&x,&y);
++d[x],++d[y];
}
for(int i=0;i<n;++i) a[cnt++] = node(i,d[i]);
sort(a,a+cnt,cmp);
for(int i=0;i<cnt;++i) {
if(a[i].d==1) v.push_back(a[i].id);
else if(v.size() >= a[i].d-1){
for(int j=0;j<a[i].d-1;++j) {
add(a[i].id,v[v.size()-1]);
v.pop_back();
}
v.push_back(a[i].id);
}
else if(v.size()+cnt-i-1>=a[i].d-1){
for(int j=0;j<v.size();++j) {
add(v[j],a[i].id);
}
for(int j=0;j<a[i].d-1-v.size();++j){
add(a[i].id,a[--cnt].id);
}
v.clear();
v.push_back(a[i].id);
}
else {
for(int j=0;j<v.size();++j){
add(a[i].id,v[j]);
}
for(int j=i+1;j<cnt;++j){
add(a[i].id,a[j].id);
}
v.clear();
break;
}
}
if(v.size()>0){
for(int i=1;i<v.size();++i){
add(v[0],v[i]);
}
}
for(int i=0;i<n;++i){
for(int j=0;j<G[i].size();++j) {
--d[i],--d[G[i][j]];
}
}
int num=0;
rep(i,0,n-1)if(d[i])++num;
printf("%d
",num);
printf("%d %d
",n,n-1);
rep(i,0,n-1){
rep(j,0,(int)G[i].size()-1) {
printf("%d %d
",i,G[i][j]);
}
}
return 0;
}