Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
分析:求n^n的最前一位数。有log10(n^n)=n*log10(n)=c,令a为c的整数部分,b为c的小数部分,则n^n=10^c=10^a*10^b,即10^b=10^(c-a),10^b的整数部分只有一位就是n^n的最左位。
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <ctime> 5 #include <iostream> 6 #include <algorithm> 7 #include <set> 8 #include <vector> 9 #include <sstream> 10 #include <queue> 11 #include <typeinfo> 12 #include <fstream> 13 #include <map> 14 #include <stack> 15 using namespace std; 16 #define INF 100000 17 typedef long long ll; 18 const int maxn=1010; 19 20 int main() 21 { 22 int t; 23 scanf("%d",&t); 24 double sum; 25 while(t--){ 26 ll n; 27 scanf("%I64d",&n); 28 sum=n*log10(n); 29 sum-=(ll)sum; 30 printf("%I64d ",(ll)pow(10.0,sum)); 31 } 32 return 0; 33 }