zoukankan      html  css  js  c++  java
  • 机器学习之垃圾邮件分类2

    读取

    def read_dataset(file_path='../data/SMSSpamCollection'):
        """
        读取数据集
        :return: 返回数据和标题
        """
    
        with open(file_path, encoding='utf-8') as f:  # 读取数据
            # 存储标题
            sms_label = []
            # 存储数据
            sms_data = []
            csv_reader = csv.reader(f, delimiter='	')
            for line in csv_reader:
                sms_label.append(line[0])  # 提取出标签
                sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
        return sms_data, sms_label
    

    数据预处理

    def preprocessing(text):
        """
        预处理
        :param text:
        :return:
        """
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
        stops = stopwords.words('english')  # 使用英文的停用词表
        tokens = [token for token in tokens if token not in stops]  # 停用词
        tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
        lmtzr = WordNetLemmatizer()
        tag = nltk.pos_tag(tokens)  # 词性
        tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
        preprocessed_text = ' '.join(tokens)
        return preprocessed_text
    

    数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    def split_dataset(data, label):
        """
        划分训练集和测试集
        :param data:
        :param label:
        :return:
        """
        x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
        return x_train, x_test, y_train, y_test
    

    文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    def tfidf_dataset(x_train, x_test):
        """
        把原始文本转化为tf-idf的特征矩阵
        :param x_train:
        :param x_test:
        :return:
        """
        tfidf = TfidfVectorizer()
        X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
        X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
        return X_train, X_test, tfidf
    
    
    def revert_mail(x_train, X_train, model):
        """
        向量还原邮件
        :param x_train:
        :param X_train:
        :param model:
        :return:
        """
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
        a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  # 词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  # key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])
    

     

    模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    def mnb_model(x_train, x_test, y_train, y_test):
        """
        模型选择(根据数据特点选择多项式分布)
        :param x_train:
        :param x_test:
        :param y_train:
        :param y_test:
        :return:
        """
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        ypre_mnb = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测值正确数:", (ypre_mnb == y_test).sum())
        return ypre_mnb
    

    模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义

    def class_report(ypre_mnb, y_test):
        """
        模型评价:混淆矩阵,分类报告
        :param ypre_mnb:
        :param y_test:
        :return:
        """
        conf_matrix = confusion_matrix(y_test, ypre_mnb)
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, ypre_mnb)
        print("------------------------------------------")
        print("分类报告:
    ", c)
        print("模型准确率:%.2f%%"%((conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix)*100))
    

    比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

     前者只考虑词汇在文本中出现的频率,属于词袋模型特征,后者除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量,能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征。属于Tfidf特征。两者相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。

    完整代码

    """
     @author Rakers
     @guide 邮件处理2
    """
    
    
    import nltk, csv
    import numpy as np
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import confusion_matrix, classification_report
    
    
    def get_wordnet_pos(treebank_tag):
        """
        根据词性,生成还原参数pos
        :param treebank_tag:
        :return:
        """
        if treebank_tag.startswith('J'):  # adj
            return nltk.corpus.wordnet.ADJ
        elif treebank_tag.startswith('V'):  # v
            return nltk.corpus.wordnet.VERB
        elif treebank_tag.startswith('N'):  # n
            return nltk.corpus.wordnet.NOUN
        elif treebank_tag.startswith('R'):  # adv
            return nltk.corpus.wordnet.ADV
        else:
            return nltk.corpus.wordnet.NOUN
    
    
    def preprocessing(text):
        """
        预处理
        :param text:
        :return:
        """
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
        stops = stopwords.words('english')  # 使用英文的停用词表
        tokens = [token for token in tokens if token not in stops]  # 停用词
        tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
        lmtzr = WordNetLemmatizer()
        tag = nltk.pos_tag(tokens)  # 词性
        tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
        preprocessed_text = ' '.join(tokens)
        return preprocessed_text
    
    
    def read_dataset():
        """
        读取数据集
        :return: 返回数据和标题
        """
        file_path = r'SMSSpamCollection'
        sms = open(file_path, encoding='utf-8')  # 读取数据
        # 存储标题
        sms_label = []
        # 存储数据
        sms_data = []
        csv_reader = csv.reader(sms, delimiter='	')
        for line in csv_reader:
            sms_label.append(line[0])  # 提取出标签
            sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
        sms.close()
        return sms_data, sms_label
    
    
    def split_dataset(data, label):
        """
        划分训练集和测试集
        :param data:
        :param label:
        :return:
        """
        x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
        return x_train, x_test, y_train, y_test
    
    def tfidf_dataset(x_train, x_test):
        """
        把原始文本转化为tf-idf的特征矩阵
        :param x_train:
        :param x_test:
        :return:
        """
        tfidf = TfidfVectorizer()
        X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
        X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
        return X_train, X_test, tfidf
    
    
    def revert_mail(x_train, X_train, model):
        """
        向量还原邮件
        :param x_train:
        :param X_train:
        :param model:
        :return:
        """
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
        a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  # 词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  # key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])
    
    
    def mnb_model(x_train, x_test, y_train, y_test):
        """
        模型选择(根据数据特点选择多项式分布)
        :param x_train:
        :param x_test:
        :param y_train:
        :param y_test:
        :return:
        """
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        ypre_mnb = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测值正确数:", (ypre_mnb == y_test).sum())
        return ypre_mnb
    
    def class_report(ypre_mnb, y_test):
        """
        模型评价:混淆矩阵,分类报告
        :param ypre_mnb:
        :param y_test:
        :return:
        """
        conf_matrix = confusion_matrix(y_test, ypre_mnb)
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, ypre_mnb)
        print("------------------------------------------")
        print("分类报告:
    ", c)
        print("模型准确率:%.2f%%"%((conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix)*100))
    
    
    if __name__ == '__main__':
        # 读取数据集
        sms_data, sms_label = read_dataset()
        # 划分数据集
        x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label)
        # 把原始文本转化为tf-idf的特征矩阵
        X_train, X_test, tfidf = tfidf_dataset(x_train, x_test)
        # 向量还原成邮件
        revert_mail(x_train, X_train, tfidf)
        # 模型选择
        y_mnb = mnb_model(X_train, X_test, y_train, y_test)
        # 模型评价
        class_report(y_mnb, y_test)
    
  • 相关阅读:
    Java修饰符/关键字
    深入理解Java面向对象三大特性 封装 继承 多态
    BUG为什么越改越多,越改越乱
    DDMS调试Virtual Box android虚拟机
    android开发之android虚拟机配置
    使用cordova 出现Error: The provided path is not Android project.
    Javascript与Flex AS3的交互
    [Ljava.lang.String; cannot be cast to java.lang.String错误
    使用Flex4的PopUpManager的addPopUp() 方法弹出 removeChild异常的解决办法
    Flex 4 不同主题下容器子元素的管理方法
  • 原文地址:https://www.cnblogs.com/Rakers1024/p/13089106.html
Copyright © 2011-2022 走看看