zoukankan      html  css  js  c++  java
  • Apple

    Problem Description
    We are going to distribute apples to n children. Every child has his/her desired number of apple A1,A2,A3,AnAi indicates the i-th child’s desired number of apple. Those children should stand in a line randomly before we distribute apples. Assume that the i-th position is occupied by pith child, i.e. from left to right the id of the children are p1,p2,p3,pn ,So their desired number of apple are Ap1,Ap2,Ap3,Apn . We will distribute Ap1 apples to the left most child,and for the i-th (i>1)child,if there exists a j which makes j < i and Apj>Api true, we will distribute no apples to him/her,otherwise we will distribute Api apples to him/ner. So for a certain permutation there exist a certain number of apples we should distribute. Now we want to know how many apples we should distribute for all possible permutation.
    Note: two permutations are considered different if and only if there exists at least a position in which two children’s desired number of apple are different.
     
    Input
    Multi test cases,the first line contains an integer T which indicates the number of test cases. Then every case occupies two lines.
    For each case, the first line contains an integer n which indicates there are n children.
    The second line contain n integers A1,A2,A3,An indicate n children’s desired number of apple.
    [Technique specification]
    All numbers are integer
    1<=T<=20
    1<=n<=100000
    1<=Ai<=1000000000
     
    Output
    For each case,output occupies one line,the output format is Case #x: ans, x is the data number starting from 1,ans is the total number of apple modular 1000000007.
     
    Sample Input
    2 2 2 3 3 1 1 2
     
    Sample Output
    Case #1: 8 Case #2: 9
    Hint
    For the second case, all possible permutation and corresponding distributed apples are (1,1,2),4 (1,2,1),3 (2,1,1),2 So the total number of apple is 2+3+4=9
     
    Source
     
    Recommend
    heyang
     
    简单题意
    给你一堆数字,要计算所有不同排列的权值(两个排列为不一样的排列当且仅当至少有一个位置上的数字不同)
    权值的计算方法:对于每个位置上的数字,要是这个数字之前不存在比这个数字大的数字,权值就加上这个数字
    胡说题解
    先排序,然后我们对于每一种数字,我们枚举有多少个被计算到权值里面,然后排列组合出这种情况的不同排列个数
     1 #include<cstdio>
     2 #include<algorithm>
     3 using namespace std;
     4 
     5 const long long p=1e9+7;
     6 long long a[100100],fac[100100],ans;
     7 int n,t;
     8 
     9 long long power(long long a,long long b){
    10     if(a<=1)return a;
    11     if(b==0)return 1;
    12     if(b==1)return a;
    13     long long tmp=power(a,b>>1);
    14     tmp=(tmp*tmp)%p;
    15     if(b&1==1)tmp=(tmp*a)%p;
    16     return tmp;
    17 }
    18 
    19 long long C(int m,int n){
    20     if(m==0)return 1;
    21     if(n<0)return 0;
    22     long long tmp=(fac[n]*power(fac[m],p-2))%p;
    23     tmp=(tmp*power(fac[n-m],p-2))%p;
    24     return tmp;
    25 }
    26 
    27 int main(){
    28     scanf("%d",&t);
    29     int i,j,s,k,l;
    30     fac[0]=1;
    31     for(i=1;i<=100000;i++)fac[i]=(fac[i-1]*i)%p;
    32     for(l=1;l<=t;l++){
    33         ans=0;
    34         scanf("%d",&n);
    35         for(i=1;i<=n;i++)scanf("%I64d",&a[i]);
    36         a[n+1]=0;
    37         sort(a+1,a+1+n);
    38         s=k=0;
    39         long long div=1;
    40         for(i=1;i<=n;i++){
    41             ++k;
    42             if(a[i]!=a[i+1]){
    43                 long long tmp,ss=0;
    44                 tmp=(fac[s]*fac[k])%p;
    45                 tmp=(tmp*fac[n-s-k])%p;
    46                 tmp=(tmp*C(s,n))%p;
    47                 for(j=1;j<=k;j++)ss+=(((a[i]*j)%p)*C(k-j,n-s-j-1))%p;
    48                 ss%=p;
    49                 ans+=(ss*tmp)%p;
    50                 ans%=p;
    51                 div=(div*fac[k])%p;
    52                 s+=k;
    53                 k=0;
    54             }
    55         }
    56         ans=(ans*power(div,p-2))%p;
    57         printf("Case #%d: %I64d
    ",l,ans);
    58     }
    59     return 0;
    60 }
    AC代码
  • 相关阅读:
    zookeeper分布式锁和服务优化配置
    【转】从Mac/OS和iOS开放源码浅谈UNIX家谱
    【转】深入了解CPU两大架构ARM与X86
    【转】volatile关键字。编译器不优化,多线程会改。防止随时变动的
    栈,寄存器,局部变量,内存,语言级别优化程序的方法
    在coursera上有哪些值得推荐的课程
    【转】楼天城楼教主的acm心路历程(作为励志用)
    硬中断软中断
    CPU GPU FPU TPU 及厂商
    C#中使用DLL相关问题
  • 原文地址:https://www.cnblogs.com/Randolph87/p/5199439.html
Copyright © 2011-2022 走看看