Trapping Rain Water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
算法很简单,核心思想是:对某个值A[i]来说,能trapped的最多的water取决于在i之前最高的值leftMostHeight[i]和在i右边的最高的值rightMostHeight[i]。(均不包含自身)。如果min(left,right) > A[i],那么在i这个位置上能trapped的water就是min(left,right) – A[i]。
有了这个想法就好办了,第一遍从左到右计算数组leftMostHeight,第二遍从右到左计算rightMostHeight,在第二遍的同时就可以计算出i位置的结果了,而且并不需要开空间来存放rightMostHeight数组。
时间复杂度是O(n),只扫了两遍。
public class Solution { public int trap(int[] A) { int n = A.length; //no way to contain any water if(n <= 2) return 0; //1. first run to calculate the heiest bar on the left of each bar int[] lmh =new int[n]; //for the most height on the left lmh[0] = 0; int maxh =A[0]; // max height for(int i =1; i<n; i++){ lmh[i] = maxh; if(A[i] > maxh) maxh = A[i]; } int trapped = 0; //2. second run from right to left, // caculate the highest bar on the right of each bar // and calculate the trapped water simutaniously maxh = A[n-1]; for(int i = n-2; i>0; i--){ int left = lmh[i]; int right = maxh; //计算lmh 和 rmh 的最小值 int container = Math.min(left, right); //如果当前值比 container 小,则能容水 if(container > A[i]){ trapped += container - A[i]; } if(maxh < A[i]) maxh = A[i]; } return trapped; } }