Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isBalanced(TreeNode root) { if(root == null) return true; if(Math.abs(getHeight(root.left) - getHeight(root.right)) > 1) return false; return isBalanced(root.left) && isBalanced(root.right); } public int getHeight(TreeNode root){ if(root == null) return 0; return Math.max(getHeight(root.left), getHeight(root.right))+1; // Attention +1 } }
Better Solution (CTCI)
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isBalanced(TreeNode root) { if(checkHeight(root) == -1) return false; else return true; } private int checkHeight(TreeNode root){ if(root == null) return 0; int leftHeight = checkHeight(root.left); if(leftHeight == -1) return -1; int rightHeight = checkHeight(root.right); if(rightHeight == -1) return -1; if(Math.abs(leftHeight - rightHeight) > 1) return -1; else return Math.max(leftHeight, rightHeight)+1; } }