zoukankan      html  css  js  c++  java
  • Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

    For example,
    Given n = 3, your program should return all 5 unique BST's shown below.

       1         3     3      2      1
               /     /      /       
         3     2     1      1   3      2
        /     /                        
       2     1         2                 3
    

    confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

    ref:http://www.cnblogs.com/feiling/p/3296156.html

    http://fisherlei.blogspot.com/2013/03/leetcode-unique-binary-search-trees-ii.html

    划分成左右子树分别进行构造,当左右子树所有可能情况都构造完毕后,加上node即可

    这里根节点可能情况为1,2,....,n

    /**
     * Definition for binary tree
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; left = null; right = null; }
     * }
     */
    public class Solution {public ArrayList<TreeNode> generateTrees(int n) {
            return generate(1,n);
        }
        
        public ArrayList<TreeNode> generate(int start, int end){
            // 存放所有可能的unique BST的root
            ArrayList<TreeNode> res = new ArrayList<TreeNode>();
            if(start > end){
                res.add(null);
                return res;
            }
            
            for(int  i = start; i <= end; i++){
                // 以 i 为树根的情况,分别递归得到所有的左子树和右子树的所有可能的组合
                ArrayList<TreeNode> leftSubTree = generate(start, i-1);
                ArrayList<TreeNode> rightSubTree = generate(i+1, end);
                for(int j = 0; j<leftSubTree.size(); j++){
                    for(int k = 0; k<rightSubTree.size(); k++){
                        // 创建树根
                        TreeNode root = new TreeNode(i);
                        // 排列组合所有可能的unique的BST
                        root.left = leftSubTree.get(j);
                        root.right = rightSubTree.get(k);
                        res.add(root);
                    }
                }
            }
            return res;
        }
    }
  • 相关阅读:
    Druid.io系列(三): Druid集群节点
    Druid.io系列(二):基本概念与架构
    Druid.io系列(一):简介
    am335x backlight
    imx6 fec分析
    imx6 ar8031 千兆网卡不能用
    imx6 spi分析
    imx6 i2c分析
    imx6 uart分析
    imx6 gpio分析
  • 原文地址:https://www.cnblogs.com/RazerLu/p/3552046.html
Copyright © 2011-2022 走看看