zoukankan      html  css  js  c++  java
  • 设计数据结构-LFU算法

    LFU 算法

    参考labuladong的文章

    LFU 算法相当于是淘汰访问频次最低的数据,如果访问频次最低的数据有多条,需要淘汰最旧的数据。把数据按照访问频次进行排序,而且频次还会不断变化。

    要求你写一个类,接受一个capacity参数,实现getput方法:

    class LFUCache {
        // 构造容量为 capacity 的缓存
        public LFUCache(int capacity) {}
        // 在缓存中查询 key
        public int get(int key) {}
        // 将 key 和 val 存入缓存
        public void put(int key, int val) {}
    }
    

    get(key)方法会去缓存中查询键key,如果key存在,则返回key对应的val,否则返回 -1。

    put(key, value)方法插入或修改缓存。如果key已存在,则将它对应的值改为val;如果key不存在,则插入键值对(key, val)

    当缓存达到容量capacity时,则应该在插入新的键值对之前,删除使用频次(后文用freq表示)最低的键值对。如果freq最低的键值对有多个,则删除其中最旧的那个。

    先从最简单的开始,根据 LFU 算法的逻辑,我们先列举出算法执行过程中的几个需求:

    • 调用get(key)方法时,要返回该key对应的val
    • 只要用get或者put方法访问一次某个key,该keyfreq就要加一。
    • 如果在容量满了的时候进行插入,则需要将freq最小的key删除,如果最小的freq对应多个key,则删除其中最旧的那一个。

    能够在 O(1) 的时间内解决这些需求,可以使用基本数据结构来逐个击破:

    • 使用一个HashMap存储keyval的映射,就可以快速计算get(key)

      HashMap<Integer, Integer> keyToVal;
      
    • 使用一个HashMap存储keyfreq的映射,就可以快速操作key对应的freq

      HashMap<Integer, Integer> keyToFreq;
      
    • 这个需求应该是 LFU 算法的核心,所以我们分开说。

      • 3.1、首先,肯定是需要freqkey的映射,用来找到freq最小的key

      • 3.2、将freq最小的key删除,那你就得快速得到当前所有key最小的freq是多少。想要时间复杂度 O(1) 的话,肯定不能遍历一遍去找,那就用一个变量minFreq来记录当前最小的freq吧。

      • 3.3、可能有多个key拥有相同的freq,所以 freqkey是一对多的关系,即一个freq对应一个key的列表。

      • 3.4、希望freq对应的key的列表是存在时序的,便于快速查找并删除最旧的key

      • 3.5、希望能够快速删除key列表中的任何一个key,因为如果频次为freq的某个key被访问,那么它的频次就会变成freq+1,就应该从freq对应的key列表中删除,加到freq+1对应的key的列表中。

        HashMap<Integer, LinkedHashSet<Integer>> freqToKeys;
        int minFreq = 0;
        

    LinkedHashSet介绍:

    它满足我们 3.3,3.4,3.5 这几个要求,普通的链表LinkedList能够满足 3.3,3.4 这两个要求,但是由于普通链表不能快速访问链表中的某一个节点,所以无法满足 3.5 的要求。

    LinkedHashSet顾名思义,是链表和哈希集合的结合体。链表不能快速访问链表节点,但是插入元素具有时序;哈希集合中的元素无序,但是可以对元素进行快速的访问和删除。

    它俩结合起来就兼具了哈希集合和链表的特性,既可以在 O(1) 时间内访问或删除其中的元素,又可以保持插入的时序,高效实现 3.5 这个需求。

    综上,我们可以写出 LFU 算法的基本数据结构:

    class LFUCache {
        // key 到 val 的映射,我们后文称为 KV 表
        HashMap<Integer, Integer> keyToVal;
        // key 到 freq 的映射,我们后文称为 KF 表
        HashMap<Integer, Integer> keyToFreq;
        // freq 到 key 列表的映射,我们后文称为 FK 表
        HashMap<Integer, LinkedHashSet<Integer>> freqToKeys;
        // 记录最小的频次
        int minFreq;
        // 记录 LFU 缓存的最大容量
        int cap;
    
        public LFUCache(int capacity) {
            keyToVal = new HashMap<>();
            keyToFreq = new HashMap<>();
            freqToKeys = new HashMap<>();
            this.cap = capacity;
            this.minFreq = 0;
        }
    
        public int get(int key) {}
    
        public void put(int key, int val) {}
    
    }
    

    我们要维护KV表,KF表,FK表三个映射,特别容易出错,有三个技巧:

    • 自顶向下,逐步求精,先写清楚主函数的逻辑框架,然后再一步步实现细节。
    • 搞清楚映射关系,如果我们更新了某个key对应的freq,那么就要同步修改KF表和FK表,这样才不会出问题。
    • 把逻辑比较复杂的部分用流程图画出来,然后根据图来写代码,可以极大减少出错的概率。

    先来实现get(key)方法,逻辑很简单,返回key对应的val,然后增加key对应的freq

    public int get(int key) {
        if (!keyToVal.containsKey(key)) {
            return -1;
        }
        // 增加 key 对应的 freq
        increaseFreq(key);
        return keyToVal.get(key);
    }
    

    增加key对应的freq是 LFU 算法的核心,所以我们干脆直接抽象成一个函数increaseFreq,这样get方法看起来就简洁清晰了对吧。

    下面来实现put(key, val)方法,逻辑略微复杂,我们直接画个图来:

    image

    直接写出put方法的逻辑:

    public void put(int key, int val) {
        if (this.cap <= 0) return;
    
        /* 若 key 已存在,修改对应的 val 即可 */
        if (keyToVal.containsKey(key)) {
            keyToVal.put(key, val);
            // key 对应的 freq 加一
            increaseFreq(key);
            return;
        }
    
        /* key 不存在,需要插入 */
        /* 容量已满的话需要淘汰一个 freq 最小的 key */
        if (this.cap <= keyToVal.size()) {
            removeMinFreqKey();
        }
    
        /* 插入 key 和 val,对应的 freq 为 1 */
        // 插入 KV 表
        keyToVal.put(key, val);
        // 插入 KF 表
        keyToFreq.put(key, 1);
        // 插入 FK 表
        freqToKeys.putIfAbsent(1, new LinkedHashSet<>());
        freqToKeys.get(1).add(key);
        // 插入新 key 后最小的 freq 肯定是 1
        this.minFreq = 1;
    }
    

    increaseFreqremoveMinFreqKey方法是 LFU 算法的核心

    首先来实现removeMinFreqKey函数:

    private void removeMinFreqKey() {
        // freq 最小的 key 列表
        LinkedHashSet<Integer> keyList = freqToKeys.get(this.minFreq);
        // 其中最先被插入的那个 key 就是该被淘汰的 key
        int deletedKey = keyList.iterator().next();
        /* 更新 FK 表 */
        keyList.remove(deletedKey);
        if (keyList.isEmpty()) {
            freqToKeys.remove(this.minFreq);
            // 问:这里需要更新 minFreq 的值吗?
        }
        /* 更新 KV 表 */
        keyToVal.remove(deletedKey);
        /* 更新 KF 表 */
        keyToFreq.remove(deletedKey);
    }
    

    删除某个键key肯定是要同时修改三个映射表的,借助minFreq参数可以从FK表中找到freq最小的keyList,根据时序,其中第一个元素就是要被淘汰的deletedKey,操作三个映射表删除这个key即可。

    这里没必要更新minFreq变量,因为你想想removeMinFreqKey这个函数是在什么时候调用?在put方法中插入新key时可能调用。而你回头看put的代码,插入新key时一定会把minFreq更新成 1,所以说即便这里minFreq变了,我们也不需要管它。

    下面来实现increaseFreq函数:

    private void increaseFreq(int key) {
        int freq = keyToFreq.get(key);
        /* 更新 KF 表 */
        keyToFreq.put(key, freq + 1);
        /* 更新 FK 表 */
        // 将 key 从 freq 对应的列表中删除
        freqToKeys.get(freq).remove(key);
        // 将 key 加入 freq + 1 对应的列表中
        freqToKeys.putIfAbsent(freq + 1, new LinkedHashSet<>());
        freqToKeys.get(freq + 1).add(key);
        // 如果 freq 对应的列表空了,移除这个 freq
        if (freqToKeys.get(freq).isEmpty()) {
            freqToKeys.remove(freq);
            // 如果这个 freq 恰好是 minFreq,更新 minFreq
            if (freq == this.minFreq) {
                this.minFreq++;
            }
        }
    }
    

    FK表中freq对应的列表被删空后,需要删除FK表中freq这个映射。如果这个freq恰好是minFreq,说明minFreq变量需要更新。

    能不能快速找到当前的minFreq呢?这里是可以的,因为我们刚才把keyfreq加了 1 嘛,所以minFreq也加 1 就行了。

  • 相关阅读:
    操作系统介绍
    python 面向对象 公有属性 用在哪里
    python 类 __module__ __class__
    操作系统发展史
    python 面向对象 字典 有序字典
    python 面向对象 私有属性
    python 面向对象 类 __doc__
    saltstack 部署
    【SQL】MySQL之使用mysqlbinlog进行增量备份及恢复详解
    [SOA] Mule ESB 3.x 入门(二)—— 配置(spring, properties, log4j)
  • 原文地址:https://www.cnblogs.com/RealGang/p/15023058.html
Copyright © 2011-2022 走看看