Problem A Daxia & Wzc's problem
Accept: 42 Submit: 228
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
Daxia在2016年5月期间去瑞士度蜜月,顺便拜访了Wzc,Wzc给他出了一个问题:
Wzc给Daxia等差数列A(0),告诉Daxia首项a和公差d;
首先让Daxia求出数列A(0)前n项和,得到新数列A(1);
然后让Daxia求出数列A(1)前n项和,得到新数列A(2);
接着让Daxia求出数列A(2)前n项和,得到新数列A(3);
...
最后让Daxia求出数列A(m-1)前n项和,得到新数列A(m);
Input
测试包含多组数据,每组一行,包含四个正整数a(0<=a<=100),d(0<d<=100),m(0<m<=1000),i(1<=i<=1000000000).
Output
每组数据输出一行整数,数列A(m)的第i项mod1000000007的值.
Sample Input
1 1 3 4
Sample Output
35
Hint
A(0): 1 2 3 4
A(1): 1 3 6 10
A(2): 1 4 10 20
A(3): 1 5 15 35
So the 4th of A(3) is 35.
Cached at 2016-08-17 19:08:15.
草稿纸上手写一下
a1 a1+d a1+2d a1+3d...
a1 2a1+d 3a1+3d 4a1+6d...
a1 3a1+d 6a1+4d 10a1+10d...
...
可以发现这个是一个类似杨辉三角的东西,大概就是C(n, m)这样算的。
然后就用Lucas就行了
1 //#pragma comment(linker, "/STACK:102400000, 102400000") 2 #include <algorithm> 3 #include <iostream> 4 #include <cstdlib> 5 #include <cstring> 6 #include <cstdio> 7 #include <vector> 8 #include <cmath> 9 #include <ctime> 10 #include <list> 11 #include <set> 12 #include <map> 13 using namespace std; 14 typedef long long LL; 15 typedef pair <int, int> P; 16 const int N = 1e3 + 5; 17 LL mod = 1e9 + 7; 18 LL f[N]; 19 20 LL Pow(LL a , LL n , LL mod) { 21 LL res = 1; 22 while(n) { 23 if(n & 1) 24 res = res * a % mod; 25 a = a * a % mod; 26 n >>= 1; 27 } 28 return res; 29 } 30 31 LL Comb(LL a , LL b , LL mod) { 32 if(a < b) { 33 return 0; 34 } 35 if(a == b) { 36 return 1; 37 } 38 LL ca = 1; 39 for(LL i = 0 ; i < b ; i++) { 40 ca = (a - i) % mod * ca % mod; 41 } 42 return (ca * f[b]) % mod; 43 } 44 45 LL Lucas(LL n , LL m , LL mod) { 46 LL ans = 1; 47 while(m && n && ans) { 48 ans = (ans * Comb(n % mod , m % mod , mod)) % mod; 49 n /= mod; 50 m /= mod; 51 } 52 return ans; 53 } 54 55 int main() 56 { 57 f[0] = 1; 58 for(LL j = 1; j < N; ++j) { 59 f[j] = j * f[j - 1] % mod; //阶乘 60 } 61 for(LL j = 0; j < N; ++j) { 62 f[j] = Pow(f[j], mod - 2, mod); //逆元 63 } 64 LL a, b, m, i; 65 while(cin >> a >> b >> m >> i) { 66 if(i == 1) { 67 cout << a << endl; 68 continue; 69 } 70 LL x = Lucas(m + i - 1, m, mod) * a % mod; 71 LL y = Lucas(m + 1 + i - 2, m + 1, mod) * b % mod; 72 cout << (x + y) % mod << endl; 73 } 74 return 0; 75 }