zoukankan      html  css  js  c++  java
  • 51nod1172 Partial Sums V2

    推一下式子发现是裸的FFT,$ans[k]=sum_{i}sum_{j}[i+j=k]a[i]*C_{m-1+j}^{j}$

    比较坑爹的就是这个模数,于是我们上任意模数的FFT

    任意模数的FFT目的就是降低卷积中的元素上界,我们设$P=lfloor sqrt{mod} floor$,

    我们将原函数中的系数变成两个$a1[i]=a[i]/P,a2[i]=a[i]%P,b1[i]=b[i]/P,b2[i]=b[i]%P$

    这样我们新卷积出来的值的上限是$n*mod$,

    $P^2$的系数是$a1*b1$,$P$的系数是$a1*b2+a2*b1$,$1$的系数是$a2*b2$,然后我们再分别卷积,最后统计答案即可

    一开始炸精了。。改成预处理单位复数根就好了。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <algorithm>
     5 #include <cmath>
     6 #define mod 1000000007
     7 #define MAXN 131072
     8 using namespace std;
     9 const double pi=acos(-1.0);
    10 const int P=31622;
    11 struct cmx{
    12     double x,y;
    13     cmx(){}
    14     cmx(double a,double b){x=a,y=b;}
    15     cmx operator + (cmx a){return cmx(x+a.x,y+a.y);}
    16     cmx operator - (cmx a){return cmx(x-a.x,y-a.y);}
    17     cmx operator * (cmx a){return cmx(x*a.x-y*a.y,x*a.y+y*a.x);}
    18     cmx operator / (double a){return cmx(x/a,y/a);}
    19 }A[MAXN],B[MAXN],C[MAXN],D[MAXN],E[MAXN],F[MAXN],G[MAXN],wn[MAXN],inv[MAXN];
    20 int n,m,N,rev[MAXN];
    21 long long ans[MAXN],a[MAXN],b[MAXN];
    22 void fft(cmx *a,int o, cmx *wn){
    23     register int i,j,k;
    24     cmx t;
    25     for(i=0;i<N;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    26     for(k=2;k<=N;k<<=1)
    27         for(j=0;j<N;j+=k)
    28             for(i=0;i<(k>>1);i++){
    29                 t=wn[N/k*i]*a[i+j+(k>>1)];
    30                 a[i+j+(k>>1)]=a[i+j]-t;
    31                 a[i+j]=a[i+j]+t;
    32             }
    33     if(o==-1)for(i=0;i<N;i++)a[i]=a[i]/N;
    34 }
    35 void FFT(long long *a,long long *b,long long *ans){
    36     register int i;
    37     for(i=0;i<N;i++){
    38         A[i]=cmx(a[i]/P,0);
    39         B[i]=cmx(a[i]%P,0);
    40         C[i]=cmx(b[i]/P,0);
    41         D[i]=cmx(b[i]%P,0);
    42     }
    43     fft(A,1,wn);fft(B,1,wn);fft(C,1,wn);fft(D,1,wn);
    44     for(i=0;i<N;i++){
    45         E[i]=A[i]*C[i];
    46         F[i]=A[i]*D[i]+B[i]*C[i];
    47         G[i]=B[i]*D[i];
    48     }
    49     fft(E,-1,inv);fft(F,-1,inv);fft(G,-1,inv);
    50     register long long tmp;
    51     for(i=0;i<n;i++){
    52         tmp=1ll*round(E[i].x);
    53         ans[i]=tmp%mod*P%mod*P%mod;
    54         tmp=1ll*round(F[i].x);
    55         (ans[i]+=tmp%mod*P%mod)%=mod;
    56         (ans[i]+=1ll*round(G[i].x))%=mod;
    57     }
    58 }
    59 long long qp(long long a,int b){
    60     long long c=1;
    61     while(b){
    62         if(b&1)c=c*a%mod;
    63         a=a*a%mod; b>>=1;
    64     }return c;
    65 }
    66 int main(){
    67     scanf("%d%d",&n,&m);
    68     register int i;
    69     for(i=0;i<n;i++)scanf("%lld",&a[i]);
    70     b[0]=1;
    71     for(i=1;i<n;i++)
    72         b[i]=1ll*b[i-1]*(m-1+i)%mod*qp(i,mod-2)%mod;
    73     for(N=1;N<(n<<1);N<<=1);
    74     for(i=0;i<N;i++){
    75         if(i&1)rev[i]=(rev[i>>1]>>1)|(N>>1);
    76         else rev[i]=rev[i>>1]>>1;
    77     }
    78     for(i=0;i<N;i++)
    79         wn[i]=cmx(cos(2*pi/N*i),sin(2*pi/N*i)),
    80         inv[i]=cmx(cos(2*pi/N*i),-sin(2*pi/N*i));
    81     FFT(a,b,ans);
    82     for(i=0;i<n;i++)printf("%lld
    ",ans[i]);
    83     return 0;
    84 }
    View Code
  • 相关阅读:
    Command Line Tools for win32
    鼠标快速复制粘帖工具!
    IBM T系列笔记本安装2003未知设备问题!
    拔智齿!痛苦磨难中!
    I am a hero!
    vim学习笔记!
    产生数
    NumPy矩阵运算
    1130:找第一个只出现一次的字符
    小A与小姐姐给气球涂色[dp + 快速幂]
  • 原文地址:https://www.cnblogs.com/Ren-Ivan/p/8476912.html
Copyright © 2011-2022 走看看