zoukankan      html  css  js  c++  java
  • Euler Sums系列(一)

    [Largesum_{n=1}^{infty} frac{H_{n}}{2^nn^4} ]


    (Largemathbf{Solution:})
    Let

    [mathcal{S}=sum^infty_{n=1}frac{H_n}{n^42^n} ]

    We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.

    [egin{align*} &sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =frac{1}{6}sum^infty_{n=1}(-1)^{n-1}H_nint^1_0x^{n-1}ln^3{x} { m d}x =frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x(1+x)}{ m d}x\ =&frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x}{ m d}x-frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{1+x}{ m d}x =frac{1}{6}sum^infty_{n=1}frac{(-1)^{n-1}}{n}int^1_0x^{n-1}ln^3{x} { m d}x\ -&frac{1}{6}int^2_1frac{ln{x}ln^3(x-1)}{x}{ m d}x =sum^infty_{n=1}frac{(-1)^{n}}{n^5}+int^1_{frac{1}{2}}frac{ln{x}ln^3(1-x)}{6x}-int^1_{frac{1}{2}}frac{ln^2{x}ln^2(1-x)}{2x}{ m d}x\+&int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{2x}{ m d}x-int^1_{frac{1}{2}}frac{ln^4{x}}{6x}{ m d}x =-frac{15}{16}zeta(5)+mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4 end{align*}]

    Starting with the easiest integral,

    [egin{align*} mathcal{I}_4=frac{1}{30}ln^5{2} end{align*}]

    For (mathcal{I}_3),

    [egin{align*} mathcal{I}_3 =&-frac{1}{2}sum^infty_{n=1}frac{1}{n}int^1_{frac{1}{2}}x^{n-1}ln^3{x} { m d}x =-frac{1}{2}sum^infty_{n=1}frac{1}{n}frac{partial^3}{partial n^3}left(frac{1}{n}-frac{1}{n2^n} ight)\ =&sum^infty_{n=1}left(frac{3}{n^5}-frac{3}{n^52^n}-frac{3ln{2}}{n^42^n}-frac{3ln^2{2}}{n^32^{n+1}}-frac{ln^3{2}}{n^22^{n+1}} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{3}{2}ln^2{2}left(frac{7}{8}zeta(3)-frac{pi^2}{12}ln{2}+frac{1}{6}ln^3{2} ight)\&-frac{1}{2}ln^3{2}left(frac{pi^2}{12}-frac{1}{2}ln^2{2} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{21}{16}zeta(3)ln^2{2}+frac{pi^2}{12}ln^3{2} end{align*}]

    For (mathcal{I}_2),

    [egin{align*} mathcal{I}_2 =&frac{1}{6}ln^5{2}+frac{1}{3}int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =frac{1}{6}ln^5{2}-frac{1}{3}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{n+1}-frac{1}{(n+1)2^{n+1}} ight)\ =&frac{1}{6}ln^5{2}+sum^infty_{n=1}frac{2H_n}{(n+1)^4}-sum^infty_{n=1}frac{2H_n}{(n+1)^42^{n+1}}-sum^infty_{n=1}frac{2ln{2}H_n}{(n+1)^32^{n+1}}\ &-sum^infty_{n=1}frac{ln^2{2}H_n}{(n+1)^22^{n+1}}-sum^infty_{n=1}frac{ln^3{2}H_n}{3(n+1)2^{n+1}}\ =&frac{1}{6}ln^5{2}+4zeta(5)-frac{pi^2}{3}zeta(3)-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)-frac{pi^4}{360}ln{2}+frac{1}{4}zeta(3)ln^2{2}-frac{1}{12}ln^5{2}\ &-frac{1}{8}zeta(3)ln^2{2}+frac{1}{6}ln^5{2}-frac{1}{6}ln^5{2}\ =&-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)+4zeta(5)-frac{pi^4}{360}ln{2}+frac{1}{8}zeta(3)ln^2{2}-frac{pi^2}{3}zeta(3)+frac{1}{12}ln^5{2} end{align*}]

    For (mathcal{I}_1),

    [egin{align*} mathcal{I}_1 =&frac{1}{6}int^{frac{1}{2}}_0frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =-frac{1}{6}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{(n+1)2^{n+1}} ight)\ =&sum^infty_{n=1}frac{H_n}{(n+1)^42^{n+1}}+sum^infty_{n=1}frac{ln{2}H_n}{(n+1)^32^{n+1}}+sum^infty_{n=1}frac{ln^2{2}H_n}{2(n+1)^22^{n+1}}+sum^infty_{n=1}frac{ln^3{2}H_n}{6(n+1)2^{n+1}}\ =&mathcal{S}-{ m Li}_5left(dfrac{1}{2} ight)+frac{pi^4}{720}ln{2}-frac{1}{16}zeta(3)ln^2{2}+frac{1}{24}ln^5{2} end{align*}]

    Combining these four integrals as (mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4) and (displaystyle -dfrac{15}{16}zeta(5)) gives

    [egin{align*} sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    But consider (displaystyle f(z)=frac{picsc(pi z)(gamma+psi_0(-z))}{z^4}). At the positive integers,

    [sum^infty_{n=1}{ m Res}(f,n)=sum^infty_{n=1}operatorname*{Res}_{z=n}left[frac{(-1)^n}{z^4(z-n)^2}+frac{(-1)^nH_n}{z^4(z-n)} ight]=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{4}zeta(5) ]

    At (z=0),

    [egin{align*} { m Res}(f,0) &=[z^3]left(frac{1}{z}+frac{pi^2}{6}z+frac{7pi^4}{360}z^3 ight)left(frac{1}{z}-frac{pi^2}{6}z-zeta(3)z^2-frac{pi^4}{90}z^3-zeta(5)z^4 ight)\ &=-zeta(5)-frac{pi^2}{6}zeta(3) end{align*}]

    At the negative integers,

    [egin{align*} sum^infty_{n=1}{ m Res}(f,-n) &=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{16}zeta(5) end{align*}]

    Since the sum of the residues is zero,

    [sum^infty_{n=1}frac{(-1)^nH_n}{n^4}=-frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) ]

    Hence,

    [egin{align*} -frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    This implies that

    [oxed{egin{align*} {sum^infty_{n=1}frac{H_n}{n^42^n}} {=}&color{blue}{2{ m Li}_5left(dfrac{1}{2} ight)+frac{1}{32}zeta(5)+{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{pi^4}{720}ln{2}+frac{1}{2}zeta(3)ln^2{2}}\&color{blue}{-frac{pi^2}{12}zeta(3)-frac{pi^2}{36}ln^3{2}+frac{1}{40}ln^5{2}} end{align*}}]

  • 相关阅读:
    DIV+CSS一种简单的左边图片右边多行文字的布局
    超级精简的鼠标触发式下拉菜单
    JQuery全选反选 随其他checkbox自动勾选全选反选
    asp.net后台注册JavaScript
    IE浏览器中iframe背景BODY透明
    iframe自适应高度的超精简方法 IE6/7/8/9 & FF经测试完全通过
    Button1.Attributes.Add() 方法小结
    在美女秘书的身体上寻找股市的趋势!很准的!
    无意中发现google Reader中的内容居然不与RSS源同步!
    参加阿里软件“旺斯卡”,居然给我寄来了1件T恤和1个4GB优盘
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436454.html
Copyright © 2011-2022 走看看