zoukankan      html  css  js  c++  java
  • Euler Sums系列(一)

    [Largesum_{n=1}^{infty} frac{H_{n}}{2^nn^4} ]


    (Largemathbf{Solution:})
    Let

    [mathcal{S}=sum^infty_{n=1}frac{H_n}{n^42^n} ]

    We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.

    [egin{align*} &sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =frac{1}{6}sum^infty_{n=1}(-1)^{n-1}H_nint^1_0x^{n-1}ln^3{x} { m d}x =frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x(1+x)}{ m d}x\ =&frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x}{ m d}x-frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{1+x}{ m d}x =frac{1}{6}sum^infty_{n=1}frac{(-1)^{n-1}}{n}int^1_0x^{n-1}ln^3{x} { m d}x\ -&frac{1}{6}int^2_1frac{ln{x}ln^3(x-1)}{x}{ m d}x =sum^infty_{n=1}frac{(-1)^{n}}{n^5}+int^1_{frac{1}{2}}frac{ln{x}ln^3(1-x)}{6x}-int^1_{frac{1}{2}}frac{ln^2{x}ln^2(1-x)}{2x}{ m d}x\+&int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{2x}{ m d}x-int^1_{frac{1}{2}}frac{ln^4{x}}{6x}{ m d}x =-frac{15}{16}zeta(5)+mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4 end{align*}]

    Starting with the easiest integral,

    [egin{align*} mathcal{I}_4=frac{1}{30}ln^5{2} end{align*}]

    For (mathcal{I}_3),

    [egin{align*} mathcal{I}_3 =&-frac{1}{2}sum^infty_{n=1}frac{1}{n}int^1_{frac{1}{2}}x^{n-1}ln^3{x} { m d}x =-frac{1}{2}sum^infty_{n=1}frac{1}{n}frac{partial^3}{partial n^3}left(frac{1}{n}-frac{1}{n2^n} ight)\ =&sum^infty_{n=1}left(frac{3}{n^5}-frac{3}{n^52^n}-frac{3ln{2}}{n^42^n}-frac{3ln^2{2}}{n^32^{n+1}}-frac{ln^3{2}}{n^22^{n+1}} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{3}{2}ln^2{2}left(frac{7}{8}zeta(3)-frac{pi^2}{12}ln{2}+frac{1}{6}ln^3{2} ight)\&-frac{1}{2}ln^3{2}left(frac{pi^2}{12}-frac{1}{2}ln^2{2} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{21}{16}zeta(3)ln^2{2}+frac{pi^2}{12}ln^3{2} end{align*}]

    For (mathcal{I}_2),

    [egin{align*} mathcal{I}_2 =&frac{1}{6}ln^5{2}+frac{1}{3}int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =frac{1}{6}ln^5{2}-frac{1}{3}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{n+1}-frac{1}{(n+1)2^{n+1}} ight)\ =&frac{1}{6}ln^5{2}+sum^infty_{n=1}frac{2H_n}{(n+1)^4}-sum^infty_{n=1}frac{2H_n}{(n+1)^42^{n+1}}-sum^infty_{n=1}frac{2ln{2}H_n}{(n+1)^32^{n+1}}\ &-sum^infty_{n=1}frac{ln^2{2}H_n}{(n+1)^22^{n+1}}-sum^infty_{n=1}frac{ln^3{2}H_n}{3(n+1)2^{n+1}}\ =&frac{1}{6}ln^5{2}+4zeta(5)-frac{pi^2}{3}zeta(3)-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)-frac{pi^4}{360}ln{2}+frac{1}{4}zeta(3)ln^2{2}-frac{1}{12}ln^5{2}\ &-frac{1}{8}zeta(3)ln^2{2}+frac{1}{6}ln^5{2}-frac{1}{6}ln^5{2}\ =&-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)+4zeta(5)-frac{pi^4}{360}ln{2}+frac{1}{8}zeta(3)ln^2{2}-frac{pi^2}{3}zeta(3)+frac{1}{12}ln^5{2} end{align*}]

    For (mathcal{I}_1),

    [egin{align*} mathcal{I}_1 =&frac{1}{6}int^{frac{1}{2}}_0frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =-frac{1}{6}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{(n+1)2^{n+1}} ight)\ =&sum^infty_{n=1}frac{H_n}{(n+1)^42^{n+1}}+sum^infty_{n=1}frac{ln{2}H_n}{(n+1)^32^{n+1}}+sum^infty_{n=1}frac{ln^2{2}H_n}{2(n+1)^22^{n+1}}+sum^infty_{n=1}frac{ln^3{2}H_n}{6(n+1)2^{n+1}}\ =&mathcal{S}-{ m Li}_5left(dfrac{1}{2} ight)+frac{pi^4}{720}ln{2}-frac{1}{16}zeta(3)ln^2{2}+frac{1}{24}ln^5{2} end{align*}]

    Combining these four integrals as (mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4) and (displaystyle -dfrac{15}{16}zeta(5)) gives

    [egin{align*} sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    But consider (displaystyle f(z)=frac{picsc(pi z)(gamma+psi_0(-z))}{z^4}). At the positive integers,

    [sum^infty_{n=1}{ m Res}(f,n)=sum^infty_{n=1}operatorname*{Res}_{z=n}left[frac{(-1)^n}{z^4(z-n)^2}+frac{(-1)^nH_n}{z^4(z-n)} ight]=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{4}zeta(5) ]

    At (z=0),

    [egin{align*} { m Res}(f,0) &=[z^3]left(frac{1}{z}+frac{pi^2}{6}z+frac{7pi^4}{360}z^3 ight)left(frac{1}{z}-frac{pi^2}{6}z-zeta(3)z^2-frac{pi^4}{90}z^3-zeta(5)z^4 ight)\ &=-zeta(5)-frac{pi^2}{6}zeta(3) end{align*}]

    At the negative integers,

    [egin{align*} sum^infty_{n=1}{ m Res}(f,-n) &=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{16}zeta(5) end{align*}]

    Since the sum of the residues is zero,

    [sum^infty_{n=1}frac{(-1)^nH_n}{n^4}=-frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) ]

    Hence,

    [egin{align*} -frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    This implies that

    [oxed{egin{align*} {sum^infty_{n=1}frac{H_n}{n^42^n}} {=}&color{blue}{2{ m Li}_5left(dfrac{1}{2} ight)+frac{1}{32}zeta(5)+{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{pi^4}{720}ln{2}+frac{1}{2}zeta(3)ln^2{2}}\&color{blue}{-frac{pi^2}{12}zeta(3)-frac{pi^2}{36}ln^3{2}+frac{1}{40}ln^5{2}} end{align*}}]

  • 相关阅读:
    海居住证我们不得不说的实情![转]
    SQL Server 日期和时间函数
    RESTORE DATABASE命令还原SQLServer 2005 数据库
    asp.net 部署数据库、开始菜单、桌面快捷方式实例(下)
    Server Application Unavailable asp.net 解决办法
    半个月,除了上班时间,而其他时间都不上网,你可以吗?(网络的郁闷)
    唐朝疆域地图[中亚势力范围(公元660年
    偶的偶像 陈松伶写真集
    Sql Server 行转列学习 根据学生表、课程表、学生成绩表统计每个学生的各科成绩和他的总成绩、平均成绩
    DIV+CSS 布局一行两列,左列固定宽度,右列自适应宽度;设置最小宽度,窗口小的时候显示滚动条.
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436454.html
Copyright © 2011-2022 走看看