zoukankan      html  css  js  c++  java
  • Euler Sums系列(一)

    [Largesum_{n=1}^{infty} frac{H_{n}}{2^nn^4} ]


    (Largemathbf{Solution:})
    Let

    [mathcal{S}=sum^infty_{n=1}frac{H_n}{n^42^n} ]

    We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.

    [egin{align*} &sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =frac{1}{6}sum^infty_{n=1}(-1)^{n-1}H_nint^1_0x^{n-1}ln^3{x} { m d}x =frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x(1+x)}{ m d}x\ =&frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x}{ m d}x-frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{1+x}{ m d}x =frac{1}{6}sum^infty_{n=1}frac{(-1)^{n-1}}{n}int^1_0x^{n-1}ln^3{x} { m d}x\ -&frac{1}{6}int^2_1frac{ln{x}ln^3(x-1)}{x}{ m d}x =sum^infty_{n=1}frac{(-1)^{n}}{n^5}+int^1_{frac{1}{2}}frac{ln{x}ln^3(1-x)}{6x}-int^1_{frac{1}{2}}frac{ln^2{x}ln^2(1-x)}{2x}{ m d}x\+&int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{2x}{ m d}x-int^1_{frac{1}{2}}frac{ln^4{x}}{6x}{ m d}x =-frac{15}{16}zeta(5)+mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4 end{align*}]

    Starting with the easiest integral,

    [egin{align*} mathcal{I}_4=frac{1}{30}ln^5{2} end{align*}]

    For (mathcal{I}_3),

    [egin{align*} mathcal{I}_3 =&-frac{1}{2}sum^infty_{n=1}frac{1}{n}int^1_{frac{1}{2}}x^{n-1}ln^3{x} { m d}x =-frac{1}{2}sum^infty_{n=1}frac{1}{n}frac{partial^3}{partial n^3}left(frac{1}{n}-frac{1}{n2^n} ight)\ =&sum^infty_{n=1}left(frac{3}{n^5}-frac{3}{n^52^n}-frac{3ln{2}}{n^42^n}-frac{3ln^2{2}}{n^32^{n+1}}-frac{ln^3{2}}{n^22^{n+1}} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{3}{2}ln^2{2}left(frac{7}{8}zeta(3)-frac{pi^2}{12}ln{2}+frac{1}{6}ln^3{2} ight)\&-frac{1}{2}ln^3{2}left(frac{pi^2}{12}-frac{1}{2}ln^2{2} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{21}{16}zeta(3)ln^2{2}+frac{pi^2}{12}ln^3{2} end{align*}]

    For (mathcal{I}_2),

    [egin{align*} mathcal{I}_2 =&frac{1}{6}ln^5{2}+frac{1}{3}int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =frac{1}{6}ln^5{2}-frac{1}{3}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{n+1}-frac{1}{(n+1)2^{n+1}} ight)\ =&frac{1}{6}ln^5{2}+sum^infty_{n=1}frac{2H_n}{(n+1)^4}-sum^infty_{n=1}frac{2H_n}{(n+1)^42^{n+1}}-sum^infty_{n=1}frac{2ln{2}H_n}{(n+1)^32^{n+1}}\ &-sum^infty_{n=1}frac{ln^2{2}H_n}{(n+1)^22^{n+1}}-sum^infty_{n=1}frac{ln^3{2}H_n}{3(n+1)2^{n+1}}\ =&frac{1}{6}ln^5{2}+4zeta(5)-frac{pi^2}{3}zeta(3)-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)-frac{pi^4}{360}ln{2}+frac{1}{4}zeta(3)ln^2{2}-frac{1}{12}ln^5{2}\ &-frac{1}{8}zeta(3)ln^2{2}+frac{1}{6}ln^5{2}-frac{1}{6}ln^5{2}\ =&-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)+4zeta(5)-frac{pi^4}{360}ln{2}+frac{1}{8}zeta(3)ln^2{2}-frac{pi^2}{3}zeta(3)+frac{1}{12}ln^5{2} end{align*}]

    For (mathcal{I}_1),

    [egin{align*} mathcal{I}_1 =&frac{1}{6}int^{frac{1}{2}}_0frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =-frac{1}{6}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{(n+1)2^{n+1}} ight)\ =&sum^infty_{n=1}frac{H_n}{(n+1)^42^{n+1}}+sum^infty_{n=1}frac{ln{2}H_n}{(n+1)^32^{n+1}}+sum^infty_{n=1}frac{ln^2{2}H_n}{2(n+1)^22^{n+1}}+sum^infty_{n=1}frac{ln^3{2}H_n}{6(n+1)2^{n+1}}\ =&mathcal{S}-{ m Li}_5left(dfrac{1}{2} ight)+frac{pi^4}{720}ln{2}-frac{1}{16}zeta(3)ln^2{2}+frac{1}{24}ln^5{2} end{align*}]

    Combining these four integrals as (mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4) and (displaystyle -dfrac{15}{16}zeta(5)) gives

    [egin{align*} sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    But consider (displaystyle f(z)=frac{picsc(pi z)(gamma+psi_0(-z))}{z^4}). At the positive integers,

    [sum^infty_{n=1}{ m Res}(f,n)=sum^infty_{n=1}operatorname*{Res}_{z=n}left[frac{(-1)^n}{z^4(z-n)^2}+frac{(-1)^nH_n}{z^4(z-n)} ight]=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{4}zeta(5) ]

    At (z=0),

    [egin{align*} { m Res}(f,0) &=[z^3]left(frac{1}{z}+frac{pi^2}{6}z+frac{7pi^4}{360}z^3 ight)left(frac{1}{z}-frac{pi^2}{6}z-zeta(3)z^2-frac{pi^4}{90}z^3-zeta(5)z^4 ight)\ &=-zeta(5)-frac{pi^2}{6}zeta(3) end{align*}]

    At the negative integers,

    [egin{align*} sum^infty_{n=1}{ m Res}(f,-n) &=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{16}zeta(5) end{align*}]

    Since the sum of the residues is zero,

    [sum^infty_{n=1}frac{(-1)^nH_n}{n^4}=-frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) ]

    Hence,

    [egin{align*} -frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    This implies that

    [oxed{egin{align*} {sum^infty_{n=1}frac{H_n}{n^42^n}} {=}&color{blue}{2{ m Li}_5left(dfrac{1}{2} ight)+frac{1}{32}zeta(5)+{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{pi^4}{720}ln{2}+frac{1}{2}zeta(3)ln^2{2}}\&color{blue}{-frac{pi^2}{12}zeta(3)-frac{pi^2}{36}ln^3{2}+frac{1}{40}ln^5{2}} end{align*}}]

  • 相关阅读:
    Linux文件属性之用户和组基础知识介绍
    企业案例-文件删除企业生产故障模拟重现(未完成待续)
    Linux文件属性之Linux文件删除重要原理详解
    Linux文件属性之软硬连接知识深度详解
    Linux文件权限基础知识
    Linux文件属性拓展知识
    Linux 文件和目录的属性及权限
    linux优化之优化开机自启动服务
    (企业面试)描述Linux系统的启动过程?
    Linux企业面试题(一)
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436454.html
Copyright © 2011-2022 走看看