zoukankan      html  css  js  c++  java
  • Euler Sums系列(一)

    [Largesum_{n=1}^{infty} frac{H_{n}}{2^nn^4} ]


    (Largemathbf{Solution:})
    Let

    [mathcal{S}=sum^infty_{n=1}frac{H_n}{n^42^n} ]

    We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.

    [egin{align*} &sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =frac{1}{6}sum^infty_{n=1}(-1)^{n-1}H_nint^1_0x^{n-1}ln^3{x} { m d}x =frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x(1+x)}{ m d}x\ =&frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x}{ m d}x-frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{1+x}{ m d}x =frac{1}{6}sum^infty_{n=1}frac{(-1)^{n-1}}{n}int^1_0x^{n-1}ln^3{x} { m d}x\ -&frac{1}{6}int^2_1frac{ln{x}ln^3(x-1)}{x}{ m d}x =sum^infty_{n=1}frac{(-1)^{n}}{n^5}+int^1_{frac{1}{2}}frac{ln{x}ln^3(1-x)}{6x}-int^1_{frac{1}{2}}frac{ln^2{x}ln^2(1-x)}{2x}{ m d}x\+&int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{2x}{ m d}x-int^1_{frac{1}{2}}frac{ln^4{x}}{6x}{ m d}x =-frac{15}{16}zeta(5)+mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4 end{align*}]

    Starting with the easiest integral,

    [egin{align*} mathcal{I}_4=frac{1}{30}ln^5{2} end{align*}]

    For (mathcal{I}_3),

    [egin{align*} mathcal{I}_3 =&-frac{1}{2}sum^infty_{n=1}frac{1}{n}int^1_{frac{1}{2}}x^{n-1}ln^3{x} { m d}x =-frac{1}{2}sum^infty_{n=1}frac{1}{n}frac{partial^3}{partial n^3}left(frac{1}{n}-frac{1}{n2^n} ight)\ =&sum^infty_{n=1}left(frac{3}{n^5}-frac{3}{n^52^n}-frac{3ln{2}}{n^42^n}-frac{3ln^2{2}}{n^32^{n+1}}-frac{ln^3{2}}{n^22^{n+1}} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{3}{2}ln^2{2}left(frac{7}{8}zeta(3)-frac{pi^2}{12}ln{2}+frac{1}{6}ln^3{2} ight)\&-frac{1}{2}ln^3{2}left(frac{pi^2}{12}-frac{1}{2}ln^2{2} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{21}{16}zeta(3)ln^2{2}+frac{pi^2}{12}ln^3{2} end{align*}]

    For (mathcal{I}_2),

    [egin{align*} mathcal{I}_2 =&frac{1}{6}ln^5{2}+frac{1}{3}int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =frac{1}{6}ln^5{2}-frac{1}{3}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{n+1}-frac{1}{(n+1)2^{n+1}} ight)\ =&frac{1}{6}ln^5{2}+sum^infty_{n=1}frac{2H_n}{(n+1)^4}-sum^infty_{n=1}frac{2H_n}{(n+1)^42^{n+1}}-sum^infty_{n=1}frac{2ln{2}H_n}{(n+1)^32^{n+1}}\ &-sum^infty_{n=1}frac{ln^2{2}H_n}{(n+1)^22^{n+1}}-sum^infty_{n=1}frac{ln^3{2}H_n}{3(n+1)2^{n+1}}\ =&frac{1}{6}ln^5{2}+4zeta(5)-frac{pi^2}{3}zeta(3)-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)-frac{pi^4}{360}ln{2}+frac{1}{4}zeta(3)ln^2{2}-frac{1}{12}ln^5{2}\ &-frac{1}{8}zeta(3)ln^2{2}+frac{1}{6}ln^5{2}-frac{1}{6}ln^5{2}\ =&-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)+4zeta(5)-frac{pi^4}{360}ln{2}+frac{1}{8}zeta(3)ln^2{2}-frac{pi^2}{3}zeta(3)+frac{1}{12}ln^5{2} end{align*}]

    For (mathcal{I}_1),

    [egin{align*} mathcal{I}_1 =&frac{1}{6}int^{frac{1}{2}}_0frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =-frac{1}{6}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{(n+1)2^{n+1}} ight)\ =&sum^infty_{n=1}frac{H_n}{(n+1)^42^{n+1}}+sum^infty_{n=1}frac{ln{2}H_n}{(n+1)^32^{n+1}}+sum^infty_{n=1}frac{ln^2{2}H_n}{2(n+1)^22^{n+1}}+sum^infty_{n=1}frac{ln^3{2}H_n}{6(n+1)2^{n+1}}\ =&mathcal{S}-{ m Li}_5left(dfrac{1}{2} ight)+frac{pi^4}{720}ln{2}-frac{1}{16}zeta(3)ln^2{2}+frac{1}{24}ln^5{2} end{align*}]

    Combining these four integrals as (mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4) and (displaystyle -dfrac{15}{16}zeta(5)) gives

    [egin{align*} sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    But consider (displaystyle f(z)=frac{picsc(pi z)(gamma+psi_0(-z))}{z^4}). At the positive integers,

    [sum^infty_{n=1}{ m Res}(f,n)=sum^infty_{n=1}operatorname*{Res}_{z=n}left[frac{(-1)^n}{z^4(z-n)^2}+frac{(-1)^nH_n}{z^4(z-n)} ight]=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{4}zeta(5) ]

    At (z=0),

    [egin{align*} { m Res}(f,0) &=[z^3]left(frac{1}{z}+frac{pi^2}{6}z+frac{7pi^4}{360}z^3 ight)left(frac{1}{z}-frac{pi^2}{6}z-zeta(3)z^2-frac{pi^4}{90}z^3-zeta(5)z^4 ight)\ &=-zeta(5)-frac{pi^2}{6}zeta(3) end{align*}]

    At the negative integers,

    [egin{align*} sum^infty_{n=1}{ m Res}(f,-n) &=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{16}zeta(5) end{align*}]

    Since the sum of the residues is zero,

    [sum^infty_{n=1}frac{(-1)^nH_n}{n^4}=-frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) ]

    Hence,

    [egin{align*} -frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    This implies that

    [oxed{egin{align*} {sum^infty_{n=1}frac{H_n}{n^42^n}} {=}&color{blue}{2{ m Li}_5left(dfrac{1}{2} ight)+frac{1}{32}zeta(5)+{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{pi^4}{720}ln{2}+frac{1}{2}zeta(3)ln^2{2}}\&color{blue}{-frac{pi^2}{12}zeta(3)-frac{pi^2}{36}ln^3{2}+frac{1}{40}ln^5{2}} end{align*}}]

  • 相关阅读:
    Shell从入门到精通进阶之四:流程控制
    15个Python面试问题(附答案)
    python教程:内置函数和语法糖触发魔法方法
    python教程:利用while求100内的整数和
    python 教程:read(),readline() 和 readlines() 比较
    python生成随机数:uniform(), randint(), gauss(), expovariate()
    Python教程: 字符串转义序列及格式化
    python单例模式的五种实现方式
    Python NumPy的常用函数
    python五种调试或排错的方法
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436454.html
Copyright © 2011-2022 走看看