zoukankan      html  css  js  c++  java
  • Euler Sums系列(一)

    [Largesum_{n=1}^{infty} frac{H_{n}}{2^nn^4} ]


    (Largemathbf{Solution:})
    Let

    [mathcal{S}=sum^infty_{n=1}frac{H_n}{n^42^n} ]

    We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.

    [egin{align*} &sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =frac{1}{6}sum^infty_{n=1}(-1)^{n-1}H_nint^1_0x^{n-1}ln^3{x} { m d}x =frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x(1+x)}{ m d}x\ =&frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{x}{ m d}x-frac{1}{6}int^1_0frac{ln^3{x}ln(1+x)}{1+x}{ m d}x =frac{1}{6}sum^infty_{n=1}frac{(-1)^{n-1}}{n}int^1_0x^{n-1}ln^3{x} { m d}x\ -&frac{1}{6}int^2_1frac{ln{x}ln^3(x-1)}{x}{ m d}x =sum^infty_{n=1}frac{(-1)^{n}}{n^5}+int^1_{frac{1}{2}}frac{ln{x}ln^3(1-x)}{6x}-int^1_{frac{1}{2}}frac{ln^2{x}ln^2(1-x)}{2x}{ m d}x\+&int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{2x}{ m d}x-int^1_{frac{1}{2}}frac{ln^4{x}}{6x}{ m d}x =-frac{15}{16}zeta(5)+mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4 end{align*}]

    Starting with the easiest integral,

    [egin{align*} mathcal{I}_4=frac{1}{30}ln^5{2} end{align*}]

    For (mathcal{I}_3),

    [egin{align*} mathcal{I}_3 =&-frac{1}{2}sum^infty_{n=1}frac{1}{n}int^1_{frac{1}{2}}x^{n-1}ln^3{x} { m d}x =-frac{1}{2}sum^infty_{n=1}frac{1}{n}frac{partial^3}{partial n^3}left(frac{1}{n}-frac{1}{n2^n} ight)\ =&sum^infty_{n=1}left(frac{3}{n^5}-frac{3}{n^52^n}-frac{3ln{2}}{n^42^n}-frac{3ln^2{2}}{n^32^{n+1}}-frac{ln^3{2}}{n^22^{n+1}} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{3}{2}ln^2{2}left(frac{7}{8}zeta(3)-frac{pi^2}{12}ln{2}+frac{1}{6}ln^3{2} ight)\&-frac{1}{2}ln^3{2}left(frac{pi^2}{12}-frac{1}{2}ln^2{2} ight)\ =&3zeta(5)-3{ m Li}_5left(dfrac{1}{2} ight)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{21}{16}zeta(3)ln^2{2}+frac{pi^2}{12}ln^3{2} end{align*}]

    For (mathcal{I}_2),

    [egin{align*} mathcal{I}_2 =&frac{1}{6}ln^5{2}+frac{1}{3}int^1_{frac{1}{2}}frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =frac{1}{6}ln^5{2}-frac{1}{3}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{n+1}-frac{1}{(n+1)2^{n+1}} ight)\ =&frac{1}{6}ln^5{2}+sum^infty_{n=1}frac{2H_n}{(n+1)^4}-sum^infty_{n=1}frac{2H_n}{(n+1)^42^{n+1}}-sum^infty_{n=1}frac{2ln{2}H_n}{(n+1)^32^{n+1}}\ &-sum^infty_{n=1}frac{ln^2{2}H_n}{(n+1)^22^{n+1}}-sum^infty_{n=1}frac{ln^3{2}H_n}{3(n+1)2^{n+1}}\ =&frac{1}{6}ln^5{2}+4zeta(5)-frac{pi^2}{3}zeta(3)-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)-frac{pi^4}{360}ln{2}+frac{1}{4}zeta(3)ln^2{2}-frac{1}{12}ln^5{2}\ &-frac{1}{8}zeta(3)ln^2{2}+frac{1}{6}ln^5{2}-frac{1}{6}ln^5{2}\ =&-2mathcal{S}+2{ m Li}_5left(dfrac{1}{2} ight)+4zeta(5)-frac{pi^4}{360}ln{2}+frac{1}{8}zeta(3)ln^2{2}-frac{pi^2}{3}zeta(3)+frac{1}{12}ln^5{2} end{align*}]

    For (mathcal{I}_1),

    [egin{align*} mathcal{I}_1 =&frac{1}{6}int^{frac{1}{2}}_0frac{ln^3{x}ln(1-x)}{1-x}{ m d}x =-frac{1}{6}sum^infty_{n=1}H_nfrac{partial^3}{partial n^3}left(frac{1}{(n+1)2^{n+1}} ight)\ =&sum^infty_{n=1}frac{H_n}{(n+1)^42^{n+1}}+sum^infty_{n=1}frac{ln{2}H_n}{(n+1)^32^{n+1}}+sum^infty_{n=1}frac{ln^2{2}H_n}{2(n+1)^22^{n+1}}+sum^infty_{n=1}frac{ln^3{2}H_n}{6(n+1)2^{n+1}}\ =&mathcal{S}-{ m Li}_5left(dfrac{1}{2} ight)+frac{pi^4}{720}ln{2}-frac{1}{16}zeta(3)ln^2{2}+frac{1}{24}ln^5{2} end{align*}]

    Combining these four integrals as (mathcal{I}_1-mathcal{I}_2+mathcal{I}_3-mathcal{I}_4) and (displaystyle -dfrac{15}{16}zeta(5)) gives

    [egin{align*} sum^infty_{n=1}frac{(-1)^nH_n}{n^4} =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    But consider (displaystyle f(z)=frac{picsc(pi z)(gamma+psi_0(-z))}{z^4}). At the positive integers,

    [sum^infty_{n=1}{ m Res}(f,n)=sum^infty_{n=1}operatorname*{Res}_{z=n}left[frac{(-1)^n}{z^4(z-n)^2}+frac{(-1)^nH_n}{z^4(z-n)} ight]=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{4}zeta(5) ]

    At (z=0),

    [egin{align*} { m Res}(f,0) &=[z^3]left(frac{1}{z}+frac{pi^2}{6}z+frac{7pi^4}{360}z^3 ight)left(frac{1}{z}-frac{pi^2}{6}z-zeta(3)z^2-frac{pi^4}{90}z^3-zeta(5)z^4 ight)\ &=-zeta(5)-frac{pi^2}{6}zeta(3) end{align*}]

    At the negative integers,

    [egin{align*} sum^infty_{n=1}{ m Res}(f,-n) &=sum^infty_{n=1}frac{(-1)^nH_n}{n^4}+frac{15}{16}zeta(5) end{align*}]

    Since the sum of the residues is zero,

    [sum^infty_{n=1}frac{(-1)^nH_n}{n^4}=-frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) ]

    Hence,

    [egin{align*} -frac{59}{32}zeta(5)+frac{pi^2}{12}zeta(3) =&3mathcal{S}-6{ m Li}_5left(dfrac{1}{2} ight)-frac{31}{16}zeta(5)-3{ m Li}_4left(dfrac{1}{2} ight)ln{2}+frac{pi^4}{240}ln{2}\&-frac{3}{2}zeta(3)ln^2{2}+frac{pi^2}{3}zeta(3)+frac{pi^2}{12}ln^3{2}-frac{3}{40}ln^5{2} end{align*}]

    This implies that

    [oxed{egin{align*} {sum^infty_{n=1}frac{H_n}{n^42^n}} {=}&color{blue}{2{ m Li}_5left(dfrac{1}{2} ight)+frac{1}{32}zeta(5)+{ m Li}_4left(dfrac{1}{2} ight)ln{2}-frac{pi^4}{720}ln{2}+frac{1}{2}zeta(3)ln^2{2}}\&color{blue}{-frac{pi^2}{12}zeta(3)-frac{pi^2}{36}ln^3{2}+frac{1}{40}ln^5{2}} end{align*}}]

  • 相关阅读:
    jquery:class选择器(父子关系)
    jquery:跳转网页
    jquery:获得当前点击对象 : $(this)
    jquery:向后台提交数组
    03 适配器 代理 外观 装饰者
    02 工厂模式
    01 单例模式 Singleton
    设计模式概论与原则 & UML类图
    06 JDBC & ORM
    05 注解与反射 & JVM
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436454.html
Copyright © 2011-2022 走看看