zoukankan      html  css  js  c++  java
  • 一个Log-Tan积分

    [Largeint_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta ]


    (Largemathbf{Solution:})
    显然

    [int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta =4int_{0}^{pi /2}xln an xmathrm{d}x ]

    利用 (mathbf{Lobachevskiy}) 函数的定义

    [mathrm{L}left ( x ight )=-int_{0}^{x}lncos xmathrm{d}x~,~ ~ ~ ~ ~ -frac{pi }{2}leq xleq frac{pi }{2} ]

    所以

    [egin{align*} int_{0}^{pi /2}xln an xmathrm{d}x &= xleft [ mathrm{L}left ( x ight )+mathrm{L}left ( frac{pi }{2}-x ight ) ight ]_{0}^{pi /2}-int_{0}^{pi /2}left [ mathrm{L}left ( x ight )+mathrm{L}left ( frac{pi }{2}-x ight ) ight ]mathrm{d}x\ &= left ( frac{pi }{2} ight )^{2}ln 2-2int_{0}^{pi /2}mathrm{L}left ( x ight )mathrm{d}x end{align*}]

    再利用

    [mathrm{L}left ( x ight )=xln 2-frac{1}{2}sum_{k=1}^{infty }frac{left ( -1 ight )^{k-1}}{k^{2}}sin 2kx ]

    就能计算得

    [egin{align*} int_{0}^{pi /2}mathrm{L}left ( x ight )mathrm{d}x&=frac{1}{2}left ( frac{pi }{2} ight )^{2}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{left ( -1 ight )^{k-1}}{k^{2}}int_{0}^{pi /2}sin 2kxmathrm{d}x \ &= frac{pi ^{2}}{8}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}} end{align*}]

    所以

    [egin{align*} int_{0}^{pi/2}xln an xmathrm{d}x &=frac{pi ^{2}}{4}ln 2-2left [ frac{pi ^{2}}{8}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}} ight ] \ &=sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}}\ &=sum_{k=1}^{infty } frac{1}{k^{3}}-sum_{k=1}^{infty }frac{1}{left ( 2k ight )^{3}}=frac{7}{8}zeta left ( 3 ight ) end{align*}]

    亦即

    [Largeoxed{displaystyle int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta=color{blue}{frac{7}{2}zeta left ( 3 ight )}} ]

    另外还可以得到

    [int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta=sum_{n=1}^{infty }frac{1}{n^{2}}left [ psi left ( n+frac{1}{2} ight )-psi left ( frac{1}{2} ight ) ight ]=frac{7}{2}zeta left ( 3 ight ) ]

    [Largecolor{purple}{sum_{n=1}^{infty }frac{1}{n^{2}}psi left ( n+frac{1}{2} ight )=frac{7}{2}zeta left ( 3 ight )-left ( gamma +2ln 2 ight )frac{pi ^{2}}{6}} ]

  • 相关阅读:
    修改数据库的兼容级别
    如何写出安全的API接口
    最新IP地址数据库
    java 中的静态(static)代码块
    Java RTTI(类型信息)(.class 类对象)
    机器学习之决策树预测——泰坦尼克号乘客数据实例
    敏捷开发 —— TDD(测试驱动开发)
    Java 内存泄漏
    红顶商人 —— 胡雪岩
    各地特色美食与点菜的艺术
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5436780.html
Copyright © 2011-2022 走看看