zoukankan      html  css  js  c++  java
  • 复杂的对数积分(三)

    [Largedisplaystyle int_0^infty frac{ln left(1+dfrac{pi^2}{4x} ight)}{e^{sqrt{x}}-1}mathrm{d}x ]


    (Largemathbf{Solution:})
    Step 1 - Split
    Let (displaystyle I=int_0^infty frac{ln left(1+dfrac{pi^2}{4x} ight)}{e^{sqrt{x}}-1}mathrm{d}x). Now put (xmapsto x^2)

    [egin{align*} I &=2int_0^infty frac{xlnleft( 1+dfrac{pi^2}{4x^2} ight)}{e^x-1}mathrm{d}x\&= 2int_0^infty frac{x ln left( 4x^2+pi^2 ight)-xln (4)-2xln(x)}{e^x-1}mathrm{d}x \ &= 2underbrace{int_0^infty frac{x ln left( 4x^2+pi^2 ight)}{e^x-1}mathrm{d}x}_{=I_1}-4ln(2) underbrace{int_0^infty frac{x}{e^x-1}mathrm{d}x}_{=I_2}-4 underbrace{int_0^infty frac{xln(x)}{e^x-1}mathrm{d}x}_{=I_3} ag{1} end{align*} ]

    Step 2 - Evaluation of (I_3)
    Note that for (Re (z)>1), we have

    [egin{align*} int_0^infty frac{x^{z-1}}{e^x-1}mathrm{d}x = Gamma(z)zeta(z) ag{2}end{align*} ]

    Differentiate both sides with respect to (z).

    [egin{align*} int_0^infty frac{x^{z-1}ln(x)}{e^x-1}mathrm{d}x= psi_0(z)Gamma(z) zeta(z)+Gamma(z)zeta '(z) ag{3}end{align*} ]

    Put (z=2) to obtain

    [egin{align*}int_0^infty frac{x ln(x)}{e^x-1}mathrm{d}x &= frac{pi^2}{6}(1-gamma)-frac{pi^2}{6} left(12 lnmathbf{A}-gamma-ln(2pi) ight) \&= frac{pi^2}{6} left( 1+ln(2pi)-12 lnmathbf{A} ight) ag{4}end{align*} ]

    Step 3 - Evaluation of (I_2)
    (I_2) can be evaluated easily by means of equation (2).

    [egin{align*} int_0^infty frac{x}{e^x-1}mathrm{d}x = frac{pi^2}{6} ag{5} end{align*}]

    Step 4 - Evaluation of (I_1)
    From here begins the dirty job. We require equation (4) of Adamchik's paper.

    [egin{align*} int_0^infty frac{x ln(x^2+z^2)}{e^{2pi x}-1}mathrm{d}x &= zeta'(-1,z)-frac{z^2}{2}ln z+frac{z^2}{4}+frac{z}{2}ln z \ &~~~-2z int_0^infty frac{arctan left( dfrac{x}{z} ight)}{e^{2pi x}-1}mathrm{d}x quad Re(z)>0 end{align*}]

    Now, from Binet's second formula we have

    [egin{align*} int_0^infty frac{x ln(x^2+z^2)}{e^{2pi x}-1}mathrm{d}x &= zeta'(-1,z)-frac{z^2}{2}ln z+frac{z^2}{4}+frac{z}{2}ln z \ &quad -z left{ln Gamma(z) -left(z-frac{1}{2} ight)ln z+z -frac{1}{2}ln(2pi) ight} ag{6} end{align*} ]

    Set (x mapsto dfrac{x}{2pi}) and put (z=dfrac{1}{4}).

    [egin{align*} &frac{1}{4pi^2}int_0^infty frac{x ln left( 4x^2+pi^2 ight)}{e^x-1}mathrm{d}x-frac{ln 2+ln(2pi)}{12} \=& zeta' left(-1, frac{1}{4} ight)+frac{1}{16}ln(2)+frac{1}{64}-frac{1}{4}ln(2)-frac{1}{4} left{ln Gamma left(frac{1}{4} ight) -frac{ln (2)}{2}+frac{1}{4} -frac{1}{2}ln(2pi) ight} \ &int_0^infty frac{x ln left(4x^2 +pi^2 ight)}{e^x-1}mathrm{d}x \=& 4pi^2 zeta' left( -1,frac{1}{4} ight)+frac{pi^2}{12}ln(2)+frac{5}{6}pi^2 ln(2pi) -frac{3}{16}pi^2-pi^2 ln Gamma left( frac{1}{4} ight) ag{7} end{align*} ]

    Now, from equations (3) and (11) of Adamchik's paper we get

    [egin{align*} zeta' left(-1,frac{1}{4} ight) &= zeta'(-1)-frac{3}{4}ln Gamma left( frac{1}{4} ight)-ln mathrm{G} left( frac{1}{4} ight) \ &= frac{1}{12}-lnmathbf{A}-frac{3}{4}ln Gamma left( frac{1}{4} ight)-left(frac{3}{32} -frac{mathbf{G}}{4pi}-frac{3}{4}ln Gamma left( frac{1}{4} ight)-frac{9}{8}lnmathbf{A} ight) \ &= frac{lnmathbf{A}}{8}+frac{mathbf{G}}{4pi}-frac{1}{96} ag{8} end{align*} ]

    where (mathrm{G}(z)) denotes the Barnes G Function.
    Using this result in (7), we get

    [egin{align*} &int_0^infty frac{x ln left(4x^2 +pi^2 ight)}{e^x-1}mathrm{d}x \&= 4pi^2 left( frac{lnmathbf{A}}{8}+frac{mathbf{G}}{4pi}-frac{1}{96} ight)+frac{pi^2}{12}ln(2)+frac{5}{6}pi^2 ln(2pi) -frac{3}{16}pi^2-pi^2 ln Gamma left( frac{1}{4} ight) \ &= frac{pi^2}{2}lnmathbf{A}+frac{pi^2}{12}ln(2)-frac{11}{48}pi^2+frac{5pi^2}{6}ln(2pi) +pi mathbf{G} - pi^2 ln Gamma left( frac{1}{4} ight) ag{9} end{align*} ]

    Step 5 - Final Answer
    Combining everything with the help of equation (1), we get

    [egin{align*} I &= 2 left(frac{pi^2}{2}lnmathbf{A}+frac{pi^2}{12}ln(2)-frac{11}{48}pi^2+frac{5pi^2}{6}ln(2pi) +pi mathbf{G} - pi^2 ln Gamma left( frac{1}{4} ight) ight) \&~~~-4ln(2) left(frac{pi^2}{6} ight)-4 left( frac{pi^2}{6} left( 1+ln(2pi)-12 lnmathbf{A} ight) ight) \ &=Largeoxed{displaystylecolor{blue}{pi^2 left{ ln left( frac{pi mathbf{A}^9 sqrt{2}}{Gamma^2 left( dfrac{1}{4} ight)} ight)-frac{9}{8} ight}+2pi mathbf{G}}} end{align*} ]

  • 相关阅读:
    微软外服 AlI In One
    js 循环多次和循环一次的时间的性能对比 All In One
    vue inject All In One
    Excel 表格数据倒置 All In One
    SVG tickets All In One
    OH MY ZSH All In One
    js array for loop performance compare All In One
    mac terminal show You have new mail All In one
    新闻视频 26 制作母版页
    转自牛腩 母版页和相对路径
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5459625.html
Copyright © 2011-2022 走看看