zoukankan      html  css  js  c++  java
  • 两个椭圆积分的比值

    计算下面两个积分的比值:

    [Largedisplaystyle int_{0}^{1}frac{1}{sqrt{1+t^{4}}}mathrm{d}t~,~int_{0}^{1}frac{1}{sqrt{1-t^{4}}}mathrm{d}t ]


    (Largemathbf{Solution:})

    [egin{align*} int_{0}^{1}frac{1}{sqrt{1+t^{4}}}mathrm{d}t &= int_{0}^{1}frac{mathrm{d}t}{sqrt{left ( 1+t^{2} ight )^{2}-2t^{2}}}\ &=frac{1}{2}int_{0}^{1}frac{1}{sqrt{1-dfrac{1}{2}left ( dfrac{2t}{1+t^{2}} ight )^{2}}}frac{2}{1+t^{2}}mathrm{d}t\ left ( t= anfrac{ heta }{2} ight ) &=frac{1}{2}int_{0}^{frac{pi }{2}}frac{mathrm{d} heta }{sqrt{1-dfrac{1}{2}sin^{2} heta }}=frac{1}{2}mathbf{K}left ( frac{1}{sqrt{2}} ight ) end{align*}]

    [egin{align*} int_{0}^{1}frac{1}{sqrt{1-t^{4}}}mathrm{d}t&=int_{0}^{frac{pi }{2}}frac{mathrm{d} heta }{sqrt{1+cos^{2} heta }} left ( t=cos heta ight )\ &=int_{0}^{frac{pi }{2}}frac{mathrm{d} heta }{sqrt{2-sin^{2} heta }}\ &=frac{1}{sqrt{2}}mathbf{K}left ( frac{1}{sqrt{2}} ight ) end{align*}]

    我们可以得到

    [Largeoxed{displaystyle {frac{displaystyle int_{0}^{1}frac{1}{sqrt{1-x^{4}}}mathrm{d}x}{displaystyle int_{0}^{1}frac{1}{sqrt{1+x^{4}}}mathrm{d}x}}=frac{dfrac{1}{sqrt{2}}mathbf{K}left ( dfrac{1}{sqrt{2}} ight )}{dfrac{1}{2}mathbf{K}left ( dfrac{1}{sqrt{2}} ight )}=color{blue}{sqrt {2}}} ]

  • 相关阅读:
    HDU 4268 multiset
    ACM-线段树
    HDU 5014 异或之和
    HDU 5012 骰子旋转(DFS)
    HDU 5011 NIM博弈
    HDU 5007 字符串匹配
    Android-Context
    Android-视图绘制
    Android-LayoutInflater
    oracle--分页过程demo1
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5483366.html
Copyright © 2011-2022 走看看