zoukankan      html  css  js  c++  java
  • Euler Sums系列(六)

    [Largedisplaystyle sum_{n=1}^{infty}frac{H_{2n}}{n(6n+1)} ]


    (Largemathbf{Solution:})
    Let (S) denote the sum. Then

    [egin{align*} S=sum_{n=1}^infty frac{H_{2n}}{n(6n+1)} &= sum_{n=1}^inftyfrac{H_{2n}}{n}int_0^1 x^{6n}mathrm dx \ &= int_0^1left( sum_{n=1}^inftyfrac{H_{2n}}{n}x^{6n} ight)mathrm dx ag{1}end{align*}]

    Let (displaystyle f(x)=sum_{n=1}^infty frac{H_n}{n}x^n) where (|x|<1). It can be shown that

    [egin{align*} f(x)= ext{Li}_2(x)+frac{1}{2}ln^2(1-x) ag{2} end{align*}]

    Then, we can write

    [egin{align*} sum_{n=1}^inftyfrac{H_{2n}}{n}x^{6n} &= fleft(x^3 ight)+fleft(-x^3 ight) \ &= ext{Li}_2left(x^3 ight)+ ext{Li}_2left(-x^3 ight)+frac{ln^2left(1-x^3 ight)+ln^2left(1+x^3 ight)}{2} ag{3} end{align*}]

    Substitute (3) into (1) to get

    [egin{align*} S=int_0^1 left( ext{Li}_2left(x^3 ight)+ ext{Li}_2left(-x^3 ight)+frac{ln^2left(1-x^3 ight)+ln^2left(1+x^3 ight)}{2} ight)mathrm dx ag{4} end{align*}]

    Note that

    [egin{align*} int_0^1left( ext{Li}_2left(x^3 ight)+ ext{Li}_2left(-x^3 ight) ight)mathrm dx &= frac{1}{2}int_0^1sum_{n=1}^inftyfrac{x^{6n}}{n^2} mathrm dx \ &=frac{1}{2}sum_{n=1}^inftyfrac{1}{n^2(6n+1)} \ &= frac{1}{2}sum_{n=1}^infty left(frac{1}{n^2}-frac{6}{n}+frac{36}{1+6n} ight) \ &= frac{1}{2}left(frac{pi^2}{6} -6psi_0left(frac{1}{6} ight)-6gamma_0-36 ight) \ &= frac{pi^2}{12}+frac{3pisqrt{3}}{2}+6ln 2+frac{9}{2}ln 3-18 ag{5} end{align*}]

    [egin{align*} frac{1}{2}int_0^1ln^3left(1-x^3 ight)mathrm dx &= frac{1}{6}int_0^1t^{-2/3}ln^2(1-t)mathrm dt quad (t=x^3)\ &= frac{1}{6}left[frac{partial^2}{partial y^2} mathrm{B}(x,y) ight]_{x=1/3,y=1} \ &= frac{pi ^2}{8}-frac{sqrt{3} pi }{2}+frac{9}{2}+frac{9}{8} ln^2 3-frac{9 ln 3}{2}+frac{1}{4} sqrt{3} pi ln 3-frac{psi_1left(dfrac{4}{3} ight)}{2} ag{6} end{align*}]

    Substitute (5) and (6) into equation (4) to get

    [S=-frac{27}{2}+frac{5pi^2}{24}+frac{9}{8}ln^2 3+frac{pisqrt{3}}{4}(4+ln 3)+6ln 2-frac{1}{2}psi_1left(frac{4}{3} ight)+frac{1}{2}int_0^1 ln^2(1+x^3)mathrm{d}x ]

    Now, it remains to calculate (displaystyle int_0^1 ln^2(1+x^3)mathrm{d}x).
    According to Mathematica, it equals

    [egin{align*} int_0^1 ln^2(1+x^3)mathrm{d}x&=18-frac{5}{36}pi ^{2}+frac{ln^{2}3}{4}+3ln^{2}2-12ln 2+frac{lndfrac{2187}{16}-12}{2sqrt{3}}pi +mathrm{Li}_{2}left ( -frac{1}{3} ight )\ &~~~-left ( 1+isqrt{3} ight )mathrm{Li}_{2}left ( frac{3-isqrt{3}}{6} ight )+left ( 1-isqrt{3} ight )mathrm{Li}_{2}left ( frac{3-isqrt{3}}{4} ight )\ &~~~-left ( 1-isqrt{3} ight )mathrm{Li}_{2}left ( frac{3+isqrt{3}}{6} ight )+left ( 1+isqrt{3} ight )mathrm{Li}_{2}left ( frac{3+isqrt{3}}{4} ight ) end{align*}]

    Hence, the final result is

    [oxed{displaystyle egin{align*} sum_{n=1}^{infty}frac{H_{2n}}{n(6n+1)}&=color{blue}{-frac{9}{2}+frac{5}{36}pi ^{2} +frac{5}{4}ln^23+frac{3}{2}ln^22-frac{ln 2}{sqrt{3}}+left ( frac{7}{4sqrt{3}}+frac{sqrt{3}}{4} ight )ln 3}\ &~~~color{blue}{+frac{1}{2}Bigg{mathrm{Li}_{2}left ( -frac{1}{3} ight )-psi _{1}left ( frac{4}{3} ight )-left ( 1+isqrt{3} ight )mathrm{Li}_{2}left ( frac{3-isqrt{3}}{6} ight )}\ &~~~color{blue}{+left ( 1-isqrt{3} ight )mathrm{Li}_{2}left ( frac{3-isqrt{3}}{4} ight )-left ( 1-isqrt{3} ight )mathrm{Li}_{2}left ( frac{3+isqrt{3}}{6} ight )}\ &~~~color{blue}{+left ( 1+isqrt{3} ight )mathrm{Li}_{2}left ( frac{3+isqrt{3}}{4} ight )Bigg}} end{align*}}]

  • 相关阅读:
    string基本字符系列容器(一)
    HDU 1541 star (树状数组)
    NKOI 1321--数列操作问题(裸BIT)
    树状数组(BIT)初学
    vector向量容器
    C++ STL概述
    2015年,为ACM奋斗的一年
    kuangbin带你飞,矩阵(简单数学推导题)
    hust 1009 Sum the K-th
    hust 1223 Friends
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5486150.html
Copyright © 2011-2022 走看看