zoukankan      html  css  js  c++  java
  • Logarithmic-Trigonometric积分系列(二)

    [Largedisplaystyle int_0^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}x ]


    (Largemathbf{Solution:})
    Let (J) donates the integral and it is easy to see that

    [egin{align*} J&=int_0^{pi/4}ln^2(sin x)ln(cos x) an x \,{ m d}x+ int_{pi/4}^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}xcr &=int_0^{pi/4}ln^2(sin x)ln(cos x) an x \,{ m d}x+ int_{0}^{pi/4}ln^2(cos x)ln(sin x)cot x \,{ m d}xcr end{align*}]

    Now, to calculate (J) we make the substitution (tleftarrowsin^2x):

    [J=frac{1}{16}int_0^1frac{ln(1-u)}{1-u}ln^2(u)\,{ m d}u ]

    But

    [frac{ln(1-u)}{1-u}=-left(sum_{n=0}^infty u^n ight)left(sum_{n=1}^infty frac{u^n}{n} ight) =-sum_{n=1}^infty H_nu^n]

    where (H_n=displaystylesum_{k=1}^n frac{1}{k}).Hence

    [J=-frac{1}{16}sum_{n=1}^infty H_nint_0^1u^nln^2(u){ m d}u =-frac{1}{8}sum_{n=1}^inftyfrac{ H_n}{(n+1)^3}]

    The sum (displaystylesum_{n=1}^inftyfrac{H_n}{n^3}) is known, it can be evaluated as follows, first we have

    [H_n=sum_{k=1}^inftyleft(frac{1}{k}-frac{1}{k+n} ight)= sum_{k=1}^infty frac{n}{k(k+n)}]

    Thus

    [sum_{n=1}^inftyfrac{H_n}{n^3}=sum_{k,ngeq1}frac{1}{n^2k(n+k)} =sum_{k,ngeq1}frac{1}{k^2n(n+k)}]

    Taking the half sum we find

    [sum_{n=1}^inftyfrac{H_n}{n^3}=frac{1}{2}sum_{k,ngeq1}frac{1}{kn(k+n)}left(frac{1}{k}+frac{1}{n} ight)= frac{1}{2}sum_{k,ngeq1}frac{1}{k^2n^2}=frac{1}{2}zeta^2(2)]

    then we obtain

    [Largeoxed{displaystyle egin{align*} int_0^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}x&=frac{1}{8}zeta(4)-frac{1}{16}zeta^2(2)\ &=color{blue}{-frac{pi^4}{2880}} end{align*}}]

  • 相关阅读:
    Linux上统计文件夹下文件个数
    linux----tail 过滤日志文件中的关键字
    Linux----Makefile
    Python--day 3
    Python--day 2
    Python--day 1
    Ubuntu14.04 64位网易云播放器
    qt 串口通信学习的目录
    qt layout 注意要点
    模拟电子第一章半导体
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5488636.html
Copyright © 2011-2022 走看看