zoukankan      html  css  js  c++  java
  • 一个有意思的对数积分的一般形式

    [Largedisplaystyleint_0^inftyfrac{lnleft(displaystylefrac{1+x^{4+sqrt{15vphantom{large A}}}}{1+x^{2+sqrt{3vphantom{large A}}}} ight)}{left(1+x^2 ight)ln x}mathrm dx=frac{pi}{4}left(2+sqrt{6}sqrt{3-sqrt{5}} ight) ]


    (Largemathbf{Proof:})
    (largemathbf{Method ~One:})
    Assume (a,binmathbb{R}). Note that

    [int_0^inftyfrac{lnleft(displaystylefrac{1+x^a}{1+x^b} ight)}{ln x}frac{mathrm dx}{1+x^2}=int_0^inftyfrac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}-int_0^inftyfrac{lnleft(displaystylefrac{1+x^b}2 ight)}{ln x}frac{mathrm dx}{1+x^2}. ]

    Both integrals on the right-hand side have the same shape, so we only need to evaluate one of them:

    [egin{align*} &phantom=underbrace{int_0^inftyfrac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}}_ ext{split the region}\ &=int_0^1frac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}+underbrace{int_1^inftyfrac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}}_{ ext{change variable} y=1/x}\ &=int_0^1frac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}+underbrace{int_1^0frac{lnleft(displaystylefrac{1+y^{-a}}2 ight)}{lnleft(y^{-1} ight)}frac1{1+y^{-2}}left(-frac1{y^2} ight)mathrm dy}_ ext{flip the bounds and simplify}\ &=int_0^1frac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}-underbrace{int_0^1frac{lnleft(displaystylefrac{1+y^{-a}}2 ight)}{ln y}frac{mathrm dy}{1+y^2}}_{ ext{rename} y ext{to} x}\ &=underbrace{int_0^1frac{lnleft(displaystylefrac{1+x^a}2 ight)}{ln x}frac{mathrm dx}{1+x^2}-int_0^1frac{lnleft(displaystylefrac{1+x^{-a}}2 ight)}{ln x}frac{mathrm dx}{1+x^2}}_ ext{combine logarithms}\ &=int_0^1frac{lnleft(displaystylefrac{1+x^a}{1+x^{-a}} ight)}{ln x}frac{mathrm dx}{1+x^2}=underbrace{int_0^1frac{lnleft(displaystylefrac{x^aleft(x^{-a}+1 ight)}{1+x^{-a}} ight)}{ln x}frac{mathrm dx}{1+x^2}}_{ ext{cancel} 1+x^{-a}}\ &=int_0^1frac{lnleft(x^a ight)}{ln x}frac{mathrm dx}{1+x^2}=aint_0^1frac{mathrm dx}{1+x^2}=a\,Big(arctan1-arctan0Big)\&=vphantom{Bigg|^0}frac{pi\,a}4 end{align*}]

    So, finally,

    [int_0^inftyfrac{lnleft(displaystylefrac{1+x^a}{1+x^b} ight)}{ln x}frac{mathrm dx}{1+x^2}=fracpi4(a-b) ]

    Therefore,

    [Largeoxed{displaystyleint_0^inftyfrac{lnleft(displaystylefrac{1+x^{4+sqrt{15vphantom{large A}}}}{1+x^{2+sqrt{3vphantom{large A}}}} ight)}{left(1+x^2 ight)ln x}mathrm dx=color{Blue} {dfrac{pi}{4}(2+sqrt{15}-sqrt{3})}} ]


    (largemathbf{Method ~Two:})
    Let the considered integral be (I). Just to make it easier to write, let (4+sqrt{15}=a) and (2+sqrt{3}=b). Use the substitution (x= an heta) to get:

    [I=int_0^{pi/2} frac{lnleft(dfrac{1+( an heta)^a}{1+( an heta)^b} ight)}{ln an heta}\,mathrm d heta ]

    Next, use the substitution ( heta=pi/2-t) to obtain:

    [I=int_0^{pi/2} frac{lnleft(dfrac{1+( an t)^a}{(1+( an t)^b)( an t)^{a-b}} ight)}{lncot t}\,mathrm dt=int_0^{pi/2} frac{-lnleft(dfrac{1+( an heta)^a}{1+( an heta)^b} ight)+(a-b)ln an heta}{ln an heta}\,mathrm d heta ]

    where I used (ln( an(pi/2- heta))=ln(cot heta)=-ln( an heta)).Add the two expressions for (I) and notice that you are left with:

    [2I=int_0^{pi/2} frac{(a-b)ln an heta}{ln an heta}\,d heta=frac{pi}{2}(a-b) ]

    [I=frac{pi}{4}(a-b) ]

    Therefore,

    [Largeoxed{displaystyleint_0^inftyfrac{lnleft(displaystylefrac{1+x^{4+sqrt{15vphantom{large A}}}}{1+x^{2+sqrt{3vphantom{large A}}}} ight)}{left(1+x^2 ight)ln x}mathrm dx=color{Blue} {dfrac{pi}{4}(2+sqrt{15}-sqrt{3})}} ]

  • 相关阅读:
    ASPxGridView之ASPxGridViewExporter
    Asp.net中,从弹出窗体取选择值
    ASPxGridView中常用操作
    asp.net Webconfig
    白皮书 CPU卡基本知识
    Linux 中的计时 转自IBM china
    网络无缝融合技术(转)
    UMA相关的网站
    几本不错的书
    手机基带芯片供应商严阵以待,备战3G市场
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5493421.html
Copyright © 2011-2022 走看看