zoukankan      html  css  js  c++  java
  • 来自贴吧的一个题目

    [Largedisplaystyle int_{0}^{1}frac{lnleft ( x+sqrt{x^{2}+1} ight )}{x}mathrm{d}x ]


    (Largemathbf{Solution:})
    注意到:

    [int_{0}^{1}frac{lnleft ( x+sqrt{x^{2}+1} ight )}{x}mathrm{d}x=int_{0}^{1}frac{mathrm{arcsinh} x}{x}mathrm{d}x ]

    分部即得:

    [int_{0}^{1}frac{mathrm{arcsinh} x}{x}mathrm{d}x=mathrm{arcsinh} xln xBigg|_{0}^{1}-int_{0}^{1}frac{ln x}{sqrt{1+x^{2}}}mathrm{d}x ]

    [mathcal{I}left ( alpha ight )=int_{0}^{1}frac{x^{alpha }}{sqrt{1+x^{2}}}mathrm{d}x ]

    我们有

    [egin{align*} mathcal{I}left ( alpha ight )&=int_{0}^{1}frac{x^{alpha }}{sqrt{1+x^{2}}}mathrm{d}x=int_{0}^{1}x^{alpha } left ( 1+x^{2} ight )^{-frac{1}{2}}mathrm{d}x\ &=frac{1}{2}int_{0}^{1}x^{frac{alpha }{2}-frac{1}{2}}left ( 1+x ight )^{-frac{1}{2}}mathrm{d}x\ &=frac{1}{1+alpha }\, _{2}F_{1}left ( frac{1}{2},frac{1+alpha }{2};frac{3+alpha }{2};-1 ight ) end{align*}]

    所以

    [largeoxed{displaystyle egin{align*} int_{0}^{1}frac{lnleft ( x+sqrt{x^{2}+1} ight )}{x}mathrm{d}x&=-int_{0}^{1}frac{ln x}{sqrt{1+x^{2}}}mathrm{d}x=-mathcal{I}'left ( 0 ight )\ &=color{blue}{mathrm{arcsinh}left ( 1 ight )-frac{1}{2}\, _{2}F_{1}^{left ( 0,1,0,0 ight )}left ( frac{1}{2},frac{1}{2};frac{3}{2};-1 ight )}\[8pt] &~~~color{blue}{-frac{1}{2}\, _{2}F_{1}^{left ( 0,0,1,0 ight )}left ( frac{1}{2},frac{1}{2};frac{3}{2};-1 ight )}\[8pt] &approx 0.95520180648118 end{align*}}]

  • 相关阅读:
    JQUERY 判断选择器选择的对象 是否存在
    js的reduce方法,改变头等函数
    盒模型 bug 与触发 bfc
    CSS(四)float 定位
    CSS(三)背景 list-style display visibility opacity vertical cursor
    css 负边距
    CSS(二) 颜色 盒模型 文字相关 border
    CSS(一) 引入方式 选择器 权重
    html总结
    主流浏览器及内核
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5563677.html
Copyright © 2011-2022 走看看