zoukankan      html  css  js  c++  java
  • 浅谈线段树

    浅谈线段树

    一、总结

    一句话总结:

    线段树和树状数组一样,都是解决 多次区间查询问题

    1、线段树解决的问题是什么问题?

    多次区间查询问题:给出n个数,n<=100,和m个询问,每次询问区间[l,r]的和,并输出

    2、线段树如何存储数据?

    用二叉树,叶子节点存每个元素的值,非叶子节点存所有叶子孩子的元素的和

    3、线段树的基本思想?

    二分

    4、线段树的修改?

    懒标记:修改的话设置懒标记,用到的时候再修改对应的节点

    二、浅谈线段树(转)

    转自:浅谈线段树
    https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html

                                                                             数据结构——线段树

    O、引例

    A.给出n个数,n<=100,和m个询问,每次询问区间[l,r]的和,并输出。

    一种回答:这也太简单了,O(n)枚举搜索就行了。

    另一种回答:还用得着o(n)枚举,前缀和o(1)就搞定。

    那好,我再修改一下题目。

    B.给出n个数,n<=100,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。

    回答:o(n)枚举。

    动态修改最起码不能用静态的前缀和做了。

    好,我再修改题目:

    C.给出n个数,n<=1000000,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。

    回答:o(n)枚举绝对超时。

    再改:

    D,给出n个数,n<=1000000,和m个操作,每个操作修改一段连续区间[a,b]的值

    回答:从a枚举到b,一个一个改。。。。。。有点儿常识的人都知道超时

    那怎么办?这就需要一种强大的数据结构:线段树

    一、基本概念

    1、线段树是一棵二叉搜索树,它储存的是一个区间的信息。

    2、每个节点以结构体的方式存储,结构体包含以下几个信息:

         区间左端点、右端点;(这两者必有)

         这个区间要维护的信息(事实际情况而定,数目不等)。

    3、线段树的基本思想:二分

    4、线段树一般结构如图所示:

    5、特殊性质:

    由上图可得,

    1、每个节点的左孩子区间范围为[l,mid],右孩子为[mid+1,r]

    2、对于结点k,左孩子结点为2*k,右孩子为2*k+1,这符合完全二叉树的性质

    二、线段树的基础操作

    注:以下基础操作均以引例中的求和为例,结构体以此为例:

    struct node
    {
           int l,r,w;//l,r分别表示区间左右端点,w表示区间和
    }tree[4*n+1];

    线段树的基础操作主要有5个:

    建树、单点查询、单点修改、区间查询、区间修改。

    1、建树,即建立一棵线段树

       ① 主体思路:a、对于二分到的每一个结点,给它的左右端点确定范围。

                         b、如果是叶子节点,存储要维护的信息。

                         c、状态合并。

      ②代码

    void build(int l,int r,int k)
    {
        tree[k].l=l;tree[k].r=r;
        if(l==r)//叶子节点 
        {
            scanf("%d",&tree[k].w);
            return ; 
        }
        int m=(l+r)/2;
        build(l,m,k*2);//左孩子 
        build(m+1,r,k*2+1);//右孩子 
        tree[k].w=tree[k*2].w+tree[k*2+1].w;//状态合并,此结点的w=两个孩子的w之和 
    }

    ③注意

     a.结构体要开4倍空间,为啥自己画一个[1,10]的线段树就懂了

     b.千万不要漏了return语句,因为到了叶子节点不需要再继续递归了。

    2、单点查询,即查询一个点的状态,设待查询点为x

       ①主体思路:与二分查询法基本一致,如果当前枚举的点左右端点相等,即叶子节点,就是目标节点。如果不是,因为这是二分法,所以设查询位置为x,当前结点区间范围为了l,r,中点为         mid,则如果x<=mid,则递归它的左孩子,否则递归它的右孩子

       ②代码

    void ask(int k)
    {
        if(tree[k].l==tree[k].r) //当前结点的左右端点相等,是叶子节点,是最终答案 
        {
            ans=tree[k].w;
            return ;
        }
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) ask(k*2);//目标位置比中点靠左,就递归左孩子 
        else ask(k*2+1);//反之,递归右孩子 
    }

      ③正确性分析:

         因为如果不是目标位置,由if—else语句对目标位置定位,逐步缩小目标范围,最后一定能只到达目标叶子节点。

    3、单点修改,即更改某一个点的状态。用引例中的例子,对第x个数加上y

    ①主体思路

     结合单点查询的原理,找到x的位置;根据建树状态合并的原理,修改每个结点的状态。

     ②代码

    void add(int k)
    {
        if(tree[k].l==tree[k].r)//找到目标位置 
        {
            tree[k].w+=y;
            return;
        }
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) add(k*2);
        else add(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;//所有包含结点k的结点状态更新 
    }

    4、区间查询,即查询一段区间的状态,在引例中为查询区间[x,y]的和

    ①主体思路

     

     

    mid=(l+r)/2

    y<=mid ,即 查询区间全在,当前区间的左子区间,往左孩子走

    x>mid 即 查询区间全在,当前区间的右子区间,往右孩子走

    否则,两个子区间都走

    ②代码

    void sum(int k)
    {
        if(tree[k].l>=x&&tree[k].r<=y) 
        {
            ans+=tree[k].w;
            return;
        }
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) sum(k*2);
        if(y>m) sum(k*2+1);
    }

    ③正确性分析

    情况1,3不用说,对于情况2,最差情况是搜到叶子节点,此时一定满足情况1

    5、区间修改,即修改一段连续区间的值,我们已给区间[a,b]的每个数都加x为例讲解

        Ⅰ.引子

           有人可能就想到了:

           修改的时候只修改对查询有用的点。

           对,这就是区间修改的关键思路。

          为了实现这个,我们引入一个新的状态——懒标记

      Ⅱ 懒标记

         (懒标记比较难理解,我尽力讲明白。。。。。。)

           1、直观理解:“懒”标记,懒嘛!用到它才动,不用它就睡觉。

           2、作用:存储到这个节点的修改信息,暂时不把修改信息传到子节点。就像家长扣零花钱,你用的时候才给你,不用不给你。

           3、实现思路(重点):

               a.原结构体中增加新的变量,存储这个懒标记。

               b.递归到这个节点时,只更新这个节点的状态,并把当前的更改值累积到标记中。注意是累积,可以这样理解:过年,很多个亲戚都给你压岁钱,但你暂时不用,所以都被你父母扣下了。

               c.什么时候才用到这个懒标记?当需要递归这个节点的子节点时,标记下传给子节点。这里不必管用哪个子节点,两个都传下去。就像你如果还有妹妹,父母给你们零花钱时总不能偏心吧

               d.下传操作:

                   3部分:①当前节点的懒标记累积到子节点的懒标记中。

                             ②修改子节点状态。在引例中,就是原状态+子节点区间点的个数*父节点传下来的懒标记

                                这就有疑问了,既然父节点都把标记传下来了,为什么还要乘父节点的懒标记,乘自己的不行吗?

                                因为自己的标记可能是父节点多次传下来的累积,每次都乘自己的懒标记造成重复累积

                             ③父节点懒标记清0。这个懒标记已经传下去了,不清0后面再用这个懒标记时会重复下传。就像你父母给了你5元钱,你不能说因为前几次给了你10元钱, 所以这次给了你15元,那你不就亏大了。 

         懒标记下穿代码:f为懒标记,其余变量与前面含义一致。

    void down(int k)
    {
        tree[k*2].f+=tree[k].f;
        tree[k*2+1].f+=tree[k].f;
        tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
        tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
        tree[k].f=0;
    }

     Ⅲ 完整的区间修改代码:

    void add(int k)
    {
        if(tree[k].l>=a&&tree[k].r<=b)//当前区间全部对要修改的区间有用 
        {
            tree[k].w+=(tree[k].r-tree[k].l+1)*x;//(r-1)+1区间点的总数
            tree[k].f+=x;
            return;
        }
        if(tree[k].f) down(k);//懒标记下传。只有不满足上面的if条件才执行,所以一定会用到当前节点的子节点 
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) add(k*2);
        if(b>m) add(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;//更改区间状态 
    }

     Ⅳ.懒标记的引入对其他基本操作的影响

         因为引入了懒标记,很多用不着的更改状态存了起来,这就会对区间查询、单点查询造成一定的影响。

         所以在使用了懒标记的程序中,单点查询、区间查询也要像区间修改那样,对用得到的懒标记下传其实就是加上一句if(tree[k].f)  down(k),其余不变

         2017.5.16 之前写的单点修改不需要下传懒标记,在此订正:单点修改也需要下传懒标记

         引入了懒标记的单点查询代码:

     void ask(int k)//单点查询
    {
        if(tree[k].l==tree[k].r)
        {
            ans=tree[k].w;
            return ;
        }
        if(tree[k].f) down(k);//懒标记下传,唯一需要更改的地方
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) ask(k*2);
        else ask(k*2+1);
    }

        引入了懒标记的区间查询代码:

    void sum(int k)//区间查询
    {
        if(tree[k].l>=x&&tree[k].r<=y) 
        {
            ans+=tree[k].w;
            return;
        }
        if(tree[k].f)  down(k)//懒标记下传,唯一需要更改的地方
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) sum(k*2);
        if(y>m) sum(k*2+1);
    }

    三、总结

    线段树5种基本操作代码:

    #include<cstdio>
    using namespace std;
    int n,p,a,b,m,x,y,ans;
    struct node
    {
        int l,r,w,f;
    }tree[400001];
    inline void build(int k,int ll,int rr)//建树 
    {
        tree[k].l=ll,tree[k].r=rr;
        if(tree[k].l==tree[k].r)
        {
            scanf("%d",&tree[k].w);
            return;
        }
        int m=(ll+rr)/2;
        build(k*2,ll,m);
        build(k*2+1,m+1,rr);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    inline void down(int k)//标记下传 
    {
        tree[k*2].f+=tree[k].f;
        tree[k*2+1].f+=tree[k].f;
        tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
        tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
        tree[k].f=0;
    }
    inline void ask_point(int k)//单点查询
    {
        if(tree[k].l==tree[k].r)
        {
            ans=tree[k].w;
            return ;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) ask_point(k*2);
        else ask_point(k*2+1);
    }
    inline void change_point(int k)//单点修改 
    {
        if(tree[k].l==tree[k].r)
        {
            tree[k].w+=y;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) change_point(k*2);
        else change_point(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w; 
    }
    inline void ask_interval(int k)//区间查询 
    {
        if(tree[k].l>=a&&tree[k].r<=b) 
        {
            ans+=tree[k].w;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) ask_interval(k*2);
        if(b>m) ask_interval(k*2+1);
    }
    inline void change_interval(int k)//区间修改 
    {
        if(tree[k].l>=a&&tree[k].r<=b)
        {
            tree[k].w+=(tree[k].r-tree[k].l+1)*y;
            tree[k].f+=y;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) change_interval(k*2);
        if(b>m) change_interval(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    int main()
    {
        scanf("%d",&n);//n个节点 
        build(1,1,n);//建树 
        scanf("%d",&m);//m种操作 
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&p);
            ans=0;
            if(p==1)
            {
                scanf("%d",&x);
                ask_point(1);//单点查询,输出第x个数 
                printf("%d",ans);
            } 
            else if(p==2)
            {
                scanf("%d%d",&x,&y);
                change_point(1);//单点修改 
            }
            else if(p==3)
            {
                scanf("%d%d",&a,&b);//区间查询 
                ask_interval(1);
                printf("%d
    ",ans);
            }
            else
            {
                 scanf("%d%d%d",&a,&b,&y);//区间修改 
                 change_interval(1);
            }
        }
    }

     四、空间优化

    父节点k,左二子2*k,右儿子2*k+1,需要4*n的空间

    但并不是所有的叶子节点占用到2n+1——4n

    这就造成大量空间浪费

    2*n空间表示法:推荐博客:http://www.cppblog.com/MatoNo1/archive/2015/05/05/195857.html

    用dfs序表示做节点下标

    父节点k,左儿子k+1,右儿子:k+左儿子区间长度*2,不是父节点下标+父节点区间长度。因为当树不满时,两者不相等

    具体实现这里就不再写模板了,就是改改左右儿子的下标

    可参考代码: 题目:楼房重建 http://www.cnblogs.com/TheRoadToTheGold/p/6361242.html 

    里面的建树用的2*n空间

    五、模板题

    1、codevs 1080 线段树练习 (单点修改+区间查询)  http://codevs.cn/problem/1080/  

    #include<cstdio>
    using namespace std;
    int n,m,p,x,y,ans;
    struct node
    {
        int l,r,w;
    }tree[400001];
    inline void build(int l,int r,int k)
    {
        tree[k].l=l;tree[k].r=r;
        if(l==r) 
        {
            scanf("%d",&tree[k].w);
            return ;
        }
        int m=(l+r)/2;
        build(l,m,k*2);
        build(m+1,r,k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    inline void add(int k)
    {
        if(tree[k].l==tree[k].r)
        {
            tree[k].w+=y;
            return;
        }
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) add(k*2);
        else add(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w; 
    }
    inline void sum(int k)
    {
        if(tree[k].l>=x&&tree[k].r<=y) 
        {
            ans+=tree[k].w;
            return;
        }
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) sum(k*2);
        if(y>m) sum(k*2+1);
    }
    int main()
    {
        scanf("%d",&n);
        build(1,n,1);
        scanf("%d",&m);
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&p,&x,&y);
            ans=0;
            if(p==1) add(1);
            else 
            {
                sum(1);
                printf("%d
    ",ans);
            }
        }
    }
    View Code

    2、codevs 1081 线段树练习2 (单点查询+区间修改) http://codevs.cn/problem/1081/

    #include<cstdio>
    using namespace std;
    int n,p,a,b,m,x,ans;
    struct node
    {
        int l,r,w,f;
    }tree[400001];
    inline void build(int k,int ll,int rr)
    {
        tree[k].l=ll,tree[k].r=rr;
        if(tree[k].l==tree[k].r)
        {
            scanf("%d",&tree[k].w);
            return;
        }
        int m=(ll+rr)/2;
        build(k*2,ll,m);
        build(k*2+1,m+1,rr);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    inline void down(int k)
    {
        tree[k*2].f+=tree[k].f;
        tree[k*2+1].f+=tree[k].f;
        tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
        tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
        tree[k].f=0;
    }
    inline void add(int k)
    {
        if(tree[k].l>=a&&tree[k].r<=b)
        {
            tree[k].w+=(tree[k].r-tree[k].l+1)*x;
            tree[k].f+=x;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) add(k*2);
        if(b>m) add(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    inline void ask(int k)
    {
        if(tree[k].l==tree[k].r)
        {
            ans=tree[k].w;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(x<=m) ask(k*2);
        else ask(k*2+1); 
    }
    int main()
    {
        scanf("%d",&n);
        build(1,1,n);
        scanf("%d",&m);
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&p);
            if(p==1)
            {
                scanf("%d%d%d",&a,&b,&x);
                add(1);
            }
            else
            {
                scanf("%d",&x);
                ask(1);
                printf("%d
    ",ans);
            }
        }
    }
    View Code

    3、codevs 1082 线段树练习3  (区间修改+区间查询)

    #include<cstdio>
    using namespace std;
    int n,p,a,b,m,x,y;
    long long ans;
    struct node
    {
        long long l,r,w,f;
    }tree[800001];
    inline void build(int k,int ll,int rr)//建树 
    {
        tree[k].l=ll,tree[k].r=rr;
        if(tree[k].l==tree[k].r)
        {
            scanf("%d",&tree[k].w);
            return;
        }
        int m=(ll+rr)/2;
        build(k*2,ll,m);
        build(k*2+1,m+1,rr);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    inline void down(int k)//标记下穿 
    {
        tree[k*2].f+=tree[k].f;
        tree[k*2+1].f+=tree[k].f;
        tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
        tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
        tree[k].f=0;
    }
    inline void ask_interval(int k)//区间查询 
    {
        if(tree[k].l>=a&&tree[k].r<=b) 
        {
            ans+=tree[k].w;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) ask_interval(k*2);
        if(b>m) ask_interval(k*2+1);
    }
    inline void change_interval(int k)//区间修改 
    {
        if(tree[k].l>=a&&tree[k].r<=b)
        {
            tree[k].w+=(tree[k].r-tree[k].l+1)*y;
            tree[k].f+=y;
            return;
        }
        if(tree[k].f) down(k);
        int m=(tree[k].l+tree[k].r)/2;
        if(a<=m) change_interval(k*2);
        if(b>m) change_interval(k*2+1);
        tree[k].w=tree[k*2].w+tree[k*2+1].w;
    }
    int main()
    {
        scanf("%d",&n); 
        build(1,1,n);
        scanf("%d",&m);
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&p);
            ans=0;
            if(p==1) 
            {
                 scanf("%d%d%d",&a,&b,&y);//区间修改 
                 change_interval(1);
            }
            else 
            {
                scanf("%d%d",&a,&b);//区间查询 
                ask_interval(1);
                printf("%lld
    ",ans);
            }
        
        }
    }
    View Code

    六、经典例题

    > codevs 3981/SPOJ GSS1/GSS3 ——区间最大子段和
    > Bzoj3813 奇数国——区间内某个值是否出现过
    >洛谷 P2894 酒店 Hotel ——区间连续一段空的长度
    > codevs 2421 /Bzoj1858 序列操作——多种操作
    > codevs 2000 / BZOJ 2957: 楼房重建——区间的最长上升子序列
     Codevs3044 矩形面积求并——扫描线

    代码的话到随笔分类——线段树里找找吧 http://www.cnblogs.com/TheRoadToTheGold/category/933602.html

     
  • 相关阅读:
    连接H3C交换机的Console口连不上
    WIN7远程桌面连接--“发生身份验证错误。要求的函数不受支持”
    关于SSD Trim功能
    电源适配器和充电器的区别和关系
    处理win7任务栏通知区域图标异常问题
    VMware Workstation 学习笔记
    关于“找不到附属汇编 Microsoft.VC90.CRT,上一个错误是 参照的汇编没有安装在系统上。”的解决
    Win7硬盘的AHCI模式
    电脑没有网络的故障分析
    通过Performance Log确定磁盘有性能问题?
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/10952991.html
Copyright © 2011-2022 走看看