zoukankan      html  css  js  c++  java
  • Numpy和Pandas的区别

    Numpy和Pandas的区别

    一、总结

    一句话总结:

    NumPy:大数据量的纯粹数组处理,以及复杂函数和线性代数等
    Pandas:处理非纯粹的、混杂数组


    虽然NumPy有着以上的种种出色的特性,其本身则难以独支数据分析这座大厦,这是一方面是由于NumPy几乎仅专注于数组处理,
    另一方面则是数据分析牵涉到的数据特性众多,需要处理各种表格和混杂数据,远非纯粹的数组(NumPy)方便解决的,而这就是pandas发力的地方。

    二、Numpy和Pandas的区别

    转自或参考:Numpy和Pandas的区别
    https://blog.csdn.net/weixin_43407092/article/details/89575559

    一、区别
    Numpy:数值计算的扩展包,它能高效处理N维数组,复杂函数,线性代数.

    Panadas:是做数据处理。是python的一个数据分析包,
    二、简介
    1)NumPy:N维数组容器

    Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。Numpy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

    1.ndarray的优势

    NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

    一、内存块风格:

    这是因为ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,而python原生lis就t只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面Numpy的ndarray不及Python原生list,但在科学计算中,Numpy的ndarray就可以省掉很多循环语句,代码使用方面比Python原生list简单的多。

    二、ndarray支持并行化运算(向量化运算)

    三、Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于纯Python代码。


    2.Pandas:表格容器
    pansdas是基于Numpy的一种工具,该工具是为了解决数据分析任务而创建的,。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量快速便捷地处理数据的函数和方法。使Python成为强大而高效的数据分析环境的重要因素之一。

     
  • 相关阅读:
    Go笔记
    EFCore CodeFirst操作MySQL
    基于NET Core简单操作Kafka
    NETCore2.2/3.0+使用带有权限验证的Swagger
    Net操作RabbitMQ
    Mysql报错问题汇总
    GDSM自动化部署shell脚本
    NET操作Redis
    ViewState原理
    使用jsonp跨域请求
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13232310.html
Copyright © 2011-2022 走看看