zoukankan      html  css  js  c++  java
  • 机器学习知识总结---1、回归和分类是可以相互转换的

    机器学习知识总结---1、回归和分类是可以相互转换的

    一、总结

    一句话总结:

    a、比如回归中算人脸的年纪,比如1-100岁,那么可以看做分类问题中有1-100个分类
    b、所以,所有的分类算法都能做回归

    1、如何算细胞的面积(或者周长)?

    可以获取细胞的图像,描绘细胞的边缘,然后获取里面的像素值,就是细胞的面积,获取周长类似

    2、比如对红细胞和白细胞来做分类?

    1、先提取特征,选特征区别度高的,比如面积和圆形度
    2、以面积为横坐标,圆形度为纵坐标画个图出来,当然面积和圆形度肯定都要先进行归一化处理
    3、画一条线尽可能的区分红细胞和白细胞,机器学习最主要的任务也就是如何划线

    3、特征个数和机器学习划线之间的关系?

    如果特征是2个,那么就是二维表,我们画一条线区分不同分类,
    如果特征是3个,就是三维表,那么我们需要画一个曲面
    如果特征是10000个,那么就是一个10000维的表,我们需要一个10000-1元的方程

    4、没有免费的午餐定理 实例?

    a、如果我们不对特征空间做先验假设,则所有算法(包括瞎猜)的平均表现是一样的
    b、例如明天太阳是否升起,如果没有那些先验假设,那么升起和不升起的概率是一样的

    5、为什么一堆圆圈里面我们更容易预测为圆圈,一堆叉叉里面我们更容易预测为叉叉?

    因为我们认为,特征差距小的样本,更可能是一类

    6、什么是支持向量机(SVM)以及它的用途?

    a、支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。
    b、在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。


    支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。
    它是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。

    7、机器学习中线性模型和非线性模型的区别?

    线性模型也就是画一条直线区分两个样本 ,非线性模型就是一条曲线

    8、为什么支持向量机能够用在小样本的计算上面?

    因为支持向量机只和 支持向量 相关

    9、所有机器学习所做的事情?

    1、先限定一个模型(方程)
    2、在一个模型里面,留出待定的参数
    3、再用训练样本确定参数的取值

    10、svm支持向量机 能处理非线性的原理?

    A、低维线性不可分的数据集,在高维空间,将以更大的概率被线性可分
    B、所以svm做的操作就是把低维映射到高维,然后接着找直线

    11、异或问题是最简单的非线性问题?

    因为你找不到一条直线来分开

    二、内容在总结中

    博客对应课程的视频位置:

     
  • 相关阅读:
    ASP.NET -- repeater控件的使用
    在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误。未找到或无法访问服务器。请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接。 (provider: 命名管道提供程序, error: 40
    错误提示:在此上下文中不允许使用名称 "***"。有效表达式包括常量、 常量表达式和变量(在某些上下文中),不允许使用列名。
    mongodb 性能提高之利用索引, 待续
    工程化 经历的 4 个阶段
    把连续的字符 变成 一个
    sort 排序详解
    理解正则 的 ?! ?:
    [ 订单查询 ] 性能 高并发 : 分表 与 用户id%1024 存放表
    搭建LNMP基础框架
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13289036.html
Copyright © 2011-2022 走看看