TensorFlow2_200729系列---8、前向传播(张量)实战
一、总结
一句话总结:
A、就是手动(模拟原理)实现多层多节点的神经网络计算,784(输入)->256->128->10(输出)
B、多节点的神经网络,用矩阵计算很方便,比代数计算方便多了
for epoch in range(10): # iterate db for 10 for step, (x, y) in enumerate(train_db): # for every batch # x:[128, 28, 28] # y: [128] # 维度变换,-1自动计算 # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28*28]) # 自动梯度计算 with tf.GradientTape() as tape: # tf.Variable # x: [b, 28*28] # h1 = x@w1 + b1 # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256] # 这里矩阵运算真方便,如果是代数,就要多写几层循环,太麻烦 h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b, 256] => [b, 128] h2 = h1@w2 + b2 h2 = tf.nn.relu(h2) # [b, 128] => [b, 10] out = h2@w3 + b3 # compute loss # 转换成one_hot编码 # out: [b, 10] # y: [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b, 10] loss = tf.square(y_onehot - out) # mean: scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # print(grads) # w1 = w1 - lr * w1_grad # 数据原地更新,只是值改变,类型不变 w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if step % 100 == 0: print(epoch, step, 'loss:', float(loss))
1、手写数字识别的时候,[784]->[512]->[128]->[10]不断降维,表示的神经网络是怎样的?
输入是图片,也就是相当于784节点,然后是512节点,所以参数w的话,是[784, 256]个,也就是784*256个
2、tf.random.truncated_normal()?
截断正态分布:sigmoid激活函数,用截断的正态分布更好,因为这样就不会有两侧的梯度消失的情况
3、神经网络参数初始化实例(第一层的784*256个w,以及256个b)?
A、w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
B、b1 = tf.Variable(tf.zeros([256]))
4、初始化数据的时候,为什么转换成tf.Variable,比如 w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))?
tf.Variable类型的数据才能自动跟踪梯度
5、第一层神经网络的计算(y=relu(w@x+b))?
h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])
h1 = tf.nn.relu(h1)
6、tensorflow转成one_hot编码的代码?
y_onehot = tf.one_hot(y, depth=10)
7、w1 = w1 - lr * w1_grad 过程代码?
w1.assign_sub(lr * grads[0]) # 数据原地更新,只是值改变,类型不变
二、前向传播(张量)实战
博客对应课程的视频位置:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# x: [60k, 28, 28],
# y: [60k]
(x, y), _ = datasets.mnist.load_data()
# 图像数据归一化
# x: [0~255] => [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
print(x.shape, y.shape, x.dtype, y.dtype)
print("----------------x的最小值和最大值----------------")
print(tf.reduce_min(x), tf.reduce_max(x))
print("----------------y的最小值和最大值----------------")
print(tf.reduce_min(y), tf.reduce_max(y))
In [2]:
# print(x[0])
In [3]:
# 每次取128张图片
train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
print('batch:', sample[0].shape, sample[1].shape)
初始化w和b
In [5]:
# [b, 784] => [b, 256] => [b, 128] => [b, 10]
# [dim_in, dim_out], [dim_out]
# 创建三对tensor
# tf.random.truncated_normal()
# 截断正态分布
# sigmoid激活函数,用截断的正态分布更好,因为这样就不会有两侧的梯度消失的情况
# w给随机数,b给0
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
# 方差为0.1
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
# tf.Variable类型的数据才能自动跟踪梯度
print(w1)
print(b1)
# 手写数字识别的时候,[784]->[512]->[128]->[10]不断降维,表示的神经网络是怎样的
# 输入是图片,也就是相当于784节点,然后是512节点,
# 所以参数w的话,是[784, 256]个,也就是784*256个
# 这里这个例子是模拟神经节点个数比较多的例子,也就是原理
In [6]:
# 学习率
lr = 1e-3
In [7]:
for epoch in range(10): # iterate db for 10
for step, (x, y) in enumerate(train_db): # for every batch
# x:[128, 28, 28]
# y: [128]
# 维度变换,-1自动计算
# [b, 28, 28] => [b, 28*28]
x = tf.reshape(x, [-1, 28*28])
# 自动梯度计算
with tf.GradientTape() as tape: # tf.Variable
# x: [b, 28*28]
# h1 = x@w1 + b1
# [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]
# 这里矩阵运算真方便,如果是代数,就要多写几层循环,太麻烦
h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])
h1 = tf.nn.relu(h1)
# [b, 256] => [b, 128]
h2 = h1@w2 + b2
h2 = tf.nn.relu(h2)
# [b, 128] => [b, 10]
out = h2@w3 + b3
# compute loss
# 转换成one_hot编码
# out: [b, 10]
# y: [b] => [b, 10]
y_onehot = tf.one_hot(y, depth=10)
# mse = mean(sum(y-out)^2)
# [b, 10]
loss = tf.square(y_onehot - out)
# mean: scalar
loss = tf.reduce_mean(loss)
# compute gradients
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
# print(grads)
# w1 = w1 - lr * w1_grad
# 数据原地更新,只是值改变,类型不变
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5])
if step % 100 == 0:
print