zoukankan      html  css  js  c++  java
  • 200820_机器学习---1、基础知识

    200820_机器学习---1、基础知识

    一、总结

    一句话总结:

    一定要录课,不录课==没学

    1、机器学习的两个驱动?

    神经网络,数据挖掘

    2、强化学习?

    介于监督和无监督之间,当答案不正确时,算法被告知,如何改正则不得而知,算法需要去探索,试验不同情况,直到得到正确答案,强化学习有时称为伴随评论家的学习,因为他只对答案评分,而不给出改进建议。

    3、监督学习?

    回归、分类

    4、机器学习过程?

    数据:数据的收集和准备
    算法:特征选择、算法选择
    模型:参数和模型选择、训练、评估

    5、权重空间?

    神经网络的参数是将神经元连接到输入的一组权重值,如将神经元的权重视为一组坐标,即所谓的权重空间


    当我们的输入数据达到200维时,人类的限制使得我们无法看见,我们最多只能看到三维投影,而对于计算机可以抽象出200个相互正交的轴的超平面进行计算,神经网络的参数是将神经元连接到输入的一组权重值,如将神经元的权重视为一组坐标,即所谓的权重空间

    6、受试者工作曲线?

    y轴真正例率,x轴假正例率,线下区面积:AUC

    7、数据与概率的转换?

    通过贝叶斯法则处理联合概率P(C,X)和条件概率P(X|C)得出P(C|X),MAP问题是训练数据中最可能的类是什么。将所有类的最终结果考虑在内的方法称为贝叶斯最优分类。

    8、权衡偏差与方差:偏差-方差困境:更复杂的模型不一定能产生更好的结果?

    模型糟糕可能由于两个原因,模型不准确而与数据不匹配,或者不精确而有极大的不稳定性。第一种情况称为偏差,第二种情况称为方差。

    9、Hebb法则?

    Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。


    早在 1949年,一位名叫 Donald Hebb的心理学家提出了一个简单法则,来说明经验如何塑造某个特定的神经回路。受巴甫洛夫著名的狗实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,形成一个细胞回路,记住这两个事物之间存在着联系。

    10、回归问题和分类问题(线的角度)?

    回归问题是用一条线去拟合数据,而分类问题是寻找一条线来划分不同类别。

    二、内容在总结中

    转自或参考:机器学习常见知识点(总结) - 范仁义 - 博客园
    https://www.cnblogs.com/Renyi-Fan/p/13532880.html

     
    我的旨在学过的东西不再忘记(主要使用艾宾浩斯遗忘曲线算法及其它智能学习复习算法)的偏公益性质的完全免费的编程视频学习网站: fanrenyi.com;有各种前端、后端、算法、大数据、人工智能等课程。
    博主25岁,前端后端算法大数据人工智能都有兴趣。
    大家有啥都可以加博主联系方式(qq404006308,微信fan404006308)互相交流。工作、生活、心境,可以互相启迪。
    聊技术,交朋友,修心境,qq404006308,微信fan404006308
    26岁,真心找女朋友,非诚勿扰,微信fan404006308,qq404006308
    人工智能群:939687837

    作者相关推荐

  • 相关阅读:
    2018-2019-2 20189212 《网络攻防技术》第一周作业
    2017、5、4
    Pyinstaller 打包exe 报错 "failed to execute script XXX"的一种解决方案
    解决 Onenote 默认全角输入的一种解决办法(输入法已经设置为默认半角)
    OneDrive一直后台占用CPU的一种解决办法
    etimer
    简单三层BP神经网络学习算法的推导
    win10无法设置移动热点的一种解决办法
    如何恢复误删的OneNote页面
    安装mysql遇到的坑--->Can't connect to MySQL server on 'localhost' (10061)
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13536370.html
Copyright © 2011-2022 走看看