zoukankan      html  css  js  c++  java
  • 词袋模型

    词袋模型

    一、总结

    一句话总结:

    Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现

    二、词袋模型

    转自或参考:

    最初的Bag of words,也叫做“词袋”,在信息检索中,Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现,或者说当这篇文章的作者在任意一个位置选择一个词汇都不受前面句子的影响而独立选择的。

    Bag-of-words模型是信息检索领域常用的文档表示方法。在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立选择的。例如有如下两个文档:

         1:Bob likes to play basketball, Jim likes too.

         2:Bob also likes to play football games.

    基于这两个文本文档,构造一个词典:

    Dictionary = {1:”Bob”, 2. “like”, 3. “to”, 4. “play”, 5. “basketball”, 6. “also”, 7. “football”, 8. “games”, 9. “Jim”, 10. “too”}。

     这个词典一共包含10个不同的单词,利用词典的索引号,上面两个文档每一个都可以用一个10维向量表示(用整数数字0~n(n为正整数)表示某个单词在文档中出现的次数):

         1:[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

         2:[1, 1, 1, 1 ,0, 1, 1, 1, 0, 0]

        向量中每个元素表示词典中相关元素在文档中出现的次数(下文中,将用单词的直方图表示)。不过,在构造文档向量的过程中可以看到,我们并没有表达单词在原来句子中出现的次序(这是本Bag-of-words模型的缺点之一,不过瑕不掩瑜甚至在此处无关紧要)。

     
    我的旨在学过的东西不再忘记(主要使用艾宾浩斯遗忘曲线算法及其它智能学习复习算法)的偏公益性质的完全免费的编程视频学习网站: fanrenyi.com;有各种前端、后端、算法、大数据、人工智能等课程。
    博主25岁,前端后端算法大数据人工智能都有兴趣。
    大家有啥都可以加博主联系方式(qq404006308,微信fan404006308)互相交流。工作、生活、心境,可以互相启迪。
    聊技术,交朋友,修心境,qq404006308,微信fan404006308
    26岁,真心找女朋友,非诚勿扰,微信fan404006308,qq404006308
    人工智能群:939687837

    作者相关推荐

  • 相关阅读:
    完全开源Android网络框架 — 基于JAVA原生的HTTP框架
    博客园—Android客户端
    撸一个Android高性能日历控件,高仿魅族
    Android开发登陆博客园的正确方式
    基于pthread的线程池实现
    重复造轮子系列——基于FastReport设计打印模板实现桌面端WPF套打和商超POS高度自适应小票打印
    重复造轮子系列——基于Ocelot实现类似支付宝接口模式的网关
    零基础ASP.NET Core WebAPI团队协作开发
    零基础ASP.NET Core MVC插件式开发
    jquery对下拉框的操作
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13722570.html
Copyright © 2011-2022 走看看