P1044 栈
题目背景
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。
题目描述
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作,
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
- 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。
(原始状态如上图所示)
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
输入输出格式
输入格式:
输入文件只含一个整数n(1≤n≤18)
输出格式:
输出文件只有一行,即可能输出序列的总数目
输入输出样例
输入样例#1:
3
输出样例#1:
5
思路:
这个题的原理是一个卡特兰数。
不懂卡特兰数的自己百度。
这里给个传送门:
https://baike.baidu.com/item/%E5%8D%A1%E7%89%B9%E5%85%B0%E6%95%B0?fr=aladdin
不过这个题目有两种变形:
1、给出一个序列,判断是否是出栈序列
2、打印出所有的出栈序列
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 using namespace std; 7 const int mxn=10000; 8 int n; 9 int f[mxn]; 10 int main(){ 11 int i,j; 12 f[0]=1; 13 f[1]=1; 14 scanf("%d",&n); 15 for(i=2;i<=n;i++){ 16 for(j=0;j<i;j++){ 17 f[i]+=f[j]*f[i-j-1]; 18 } 19 } 20 printf("%d",f[n]); 21 return 0; 22 }