zoukankan      html  css  js  c++  java
  • P1578 奶牛浴场

    P1578 奶牛浴场

    题目描述

    由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少。为了讨好奶牛,John决定在牛场中建造一个大型浴场。但是John的奶牛有一个奇怪的习惯,每头奶牛都必须在牛场中的一个固定的位置产奶,而奶牛显然不能在浴场中产奶,于是,John希望所建造的浴场不覆盖这些产奶点。这回,他又要求助于Clevow了。你还能帮助Clevow吗?

    John的牛场和规划的浴场都是矩形。浴场要完全位于牛场之内,并且浴场的轮廓要与牛场的轮廓平行或者重合。浴场不能覆盖任何产奶点,但是产奶点可以位于浴场的轮廓上。

    Clevow当然希望浴场的面积尽可能大了,所以你的任务就是帮她计算浴场的最大面积。

    输入输出格式

    输入格式:

     

    输入文件的第一行包含两个整数L和W,分别表示牛场的长和宽。文件的第二行包含一个整数n,表示产奶点的数量。以下n行每行包含两个整数x和y,表示一个产奶点的坐标。所有产奶点都位于牛场内,即:0<=x<=L,0<=y<=W。

     

    输出格式:

     

    输出文件仅一行,包含一个整数S,表示浴场的最大面积。

     

    输入输出样例

    输入样例#1: 复制
    10 10
    4
    1 1
    9 1
    1 9
    9 9
    输出样例#1: 复制
    80

    说明

    0<=n<=5000

    1<=L,W<=30000

    Winter Camp 2002

    洛谷题解:

    这个题目很出名,可以在百度搜索王知昆国家队dalao的论文,其中说的非常详细,但是可惜的是在他本人的代码中也有两个bug,我上面的两组数据他的代码也出现的错误。可能是由于本题数据较水,所以很多有bug的代码水过去了。

    我来简单的说一下:

    先枚举极大子矩形的左边界,然后从左到右依次扫描每一个障碍点,并不断修改可行的上下边界,从而枚举出所有以这个定点为左边界的极大子矩形。考虑如图2中的三个点,现在我们要确定所有以1号点为左边界的极大矩形。先将1号点右边的点按横坐标排序。然后按从左到右的顺序依次扫描1号点右边的点,同时记录下当前的可行的上下边界。

    开始时令当前的上下边界分别为整个矩形的上下边界。然后开始扫描。第一次遇到2号点,以2号点作为右边界,结合当前的上下边界,就得到一个极大子矩形(如图3)。

    同时,由于所求矩形不能包含2号点,且2号点在1号点的下方,所以需要修改当前的下边界,即以2号点的纵坐标作为新的下边界。第二次遇到3号点,这时以3号点的横坐标作为右边界又可以得到一个满足性质1的矩形(如图4)。

    类似的,需要相应地修改上边界。以此类推,如果这个点是在当前点(确定左边界的点)上方,则修改上边界;如果在下方,则修改下边界;如果处在同一行,则可中止搜索(因为后面的矩形面积都是0了)。由于已经在障碍点集合中增加了整个矩形右上角和右下角的两个点,所以不会遗漏右边界与整个矩形的右边重合的极大子矩形(如图5)。

    需要注意的是,如果扫描到的点不在当前的上下边界内,那么就不需要对这个点进行处理。

    这样做是否将所有的极大子矩形都枚举过了呢?

    可以发现,这样做只考虑到了左边界覆盖一个点的矩形,因此我们还需要枚举左边界与整个矩形的左边界重合的情况。这还可以分为两类情况。一种是左边界与整个举行的左边界重合,而右边界覆盖了一个障碍点的情况,对于这种情况,可以用类似的方法从右到左扫描每一个点作为右边界的情况。这就是上面第一个数据楼下二位错在哪里。

    另一种是左右边界均与整个矩形的左右边界重合的情况,对于这类情况我们可以在预处理中完成:先将所有点按纵坐标排序,然后可以得到以相邻两个点的纵坐标为上下边界,左右边界与整个矩形的左右边界重合的矩形,显然这样的矩形也是极大子矩形,因此也需要被枚举到。这就是上面第二个数据楼下两位错在哪里。

    对于开始预处理,需要人为添加0,0;0,l;w,0;l,w四个点,这时王知昆dalao错的第一个地方。

    对于他其中的一个剪枝优化显然是不小心打错了。具体会在代码中说。

    参考代码:

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 #define re register
     5 #define REP(i,a,b) for (re int i=(a);i<=(b);i++)
     6 #define DREP(i,a,b) for (re int i=(a);i>=(b);i--)
     7 using namespace std;
     8 const int N=5e3+7;
     9 struct Cow{
    10     int x,y;
    11     inline bool operator < (const Cow &rhs) const {
    12         if (x!=rhs.x)return x<rhs.x;
    13         return y<rhs.y;
    14     }
    15 }a[N];
    16 int L,W,n;
    17 inline bool cmp(Cow a,Cow b){
    18     return a.y<b.y;
    19 }
    20 inline int read(){
    21     re int x=0,f=1;char ch=getchar();
    22     while (ch<'0' || ch>'9'){if (ch=='-')f=-1;ch=getchar();}
    23     while ('0'<=ch && ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    24     return x*f;
    25 }
    26 int main(){
    27     L=read(),W=read(),n=read();
    28     REP(i,1,n)a[i].x=read(),a[i].y=read();
    29     a[++n].x=0;a[n].y=0;
    30     a[++n].x=L;a[n].y=0;
    31     a[++n].x=0;a[n].y=W;
    32     a[++n].x=L;a[n].y=W;
    33     sort(a+1,a+n+1);
    34     int res=0;
    35     REP(i,1,n){
    36         re int h=W,l=0,v=L-a[i].x;
    37         REP(j,i+1,n)if (a[j].y<=h && a[j].y>=l){
    38             if (v*(h-l)<=res)break;
    39             res=max(res,(a[j].x-a[i].x)*(h-l));
    40             if (a[j].y==a[i].y)break;
    41             if (a[j].y>a[i].y)h=min(h,a[j].y);
    42             else l=max(l,a[j].y);
    43         }
    44         h=W,l=0,v=a[i].x;//王知昆dalao在此处仍将v设为l-a[i].x,这显然不对,可以自己想一想。
    45         DREP(j,i-1,1)
    46             if (a[j].y<=h && a[j].y>=l){
    47             if (v*(h-l)<=res)break;
    48             res=max(res,(a[i].x-a[j].x)*(h-l));
    49             if (a[i].y==a[j].y)break;
    50             if (a[j].y>a[i].y)h=min(h,a[j].y);
    51             else l=max(l,a[j].y);
    52         }
    53     }
    54     sort(a+1,a+n+1,cmp);
    55     REP(i,1,n-1)res=max(res,(a[i+1].y-a[i].y)*L);
    56     printf("%d",res);
    57     return 0;
    58 }

    P1578 奶牛浴场

  • 相关阅读:
    Maven+SpringMVC+Dubbo 简单的入门demo配置
    记录Gerrit2.8.4环境迁移、安装、配置以及问题解决
    初试Jenkins2.0 Pipeline持续集成
    Docker镜像仓库Harbor之搭建及配置
    Docker镜像仓库Harbor之Swagger REST API整合配置
    GitLab 之 PlantUML 的配置及使用
    Git Review + Gerrit 安装及使用完成 Code-Review
    Maven 插件之 docker-maven-plugin 的使用
    SonarQube 的安装、配置及 Maven 项目的使用
    Java Maven项目之Nexus私服搭建和版本管理应用
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/7728193.html
Copyright © 2011-2022 走看看