ZR#998
解法:
先把所有物品按照拿走的时间从小到大排序,拿走的时间相同就按照放上去的时间从大到小。那么一件物品上方的物品就一定会在它的前面。
考虑 $ dp $ ,设 $ f[i][j] $ 表示 $ i $ 以及 $ i $ 上面物品在所有时刻中最大重量为 $ j $ 时的最大收益。
转移的时候,我们需要枚举所有 $ i $ 上面的物品,维护一个 $ g[i] $ 表示时刻 $ i $ 之前物品的最大收益是多少。然后直接转移就好了。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
#define N 100010
struct Node {
int in,out;
int w,s,v;
inline bool operator < (const Node &x) const {
if(in != x.in) return in < x.in;
else return out > x.out;
}
} a[N];
int f[1010][2010],n,ans,s;
int main() {
scanf("%d%d",&n,&s);
for(int i = 1 ; i <= n ; i++)
scanf("%d%d%d%d%d",&a[i].in,&a[i].out,&a[i].w,&a[i].s,&a[i].v);
sort(a + 1,a + n + 1);
for(int i = 1 ; i <= n ; i++) {
int u = min(s,a[i].s);
for(int j = 0 ; j <= u ; j++) {
f[i][j] = a[i].v;
int sum = 0;
for(int k = i - 1 ; k >= 1 ; k--) {
if(a[k].out >= a[i].out) f[i][j] = max(f[i][j],f[k][j + a[i].w] + a[i].v + sum);
if(a[k].out <= a[i].in && a[k].s <= j + a[i].w) sum += a[k].v;
}
ans = max(ans,f[i][j]);
}
}
printf("%d
",ans);
//system("pause");
return 0;
}
补充,因为写完题解就被叉了,所以补一发改过后的。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
#define N 1010
struct bag {
int in, out;
int w, s, v;
} d[N];
int n,S,f[N][N],g[N][N];
inline bool cmp(bag a, bag b) {
if (a.out == b.out)return a.in > b.in;
else return a.out < b.out;
}
int main() {
scanf("%d%d",&n,&S);
for(int i = 1 ; i <= n ; i++)
scanf("%d%d%d%d%d",&d[i].in,&d[i].out,&d[i].w,&d[i].s,&d[i].v);
d[0].out = 2 * n + 1,d[0].s = S;
sort(d,d + n + 1,cmp);
for(int i = 0 ; i <= n ; i++) {
int j = 0, t = min(d[i].s, S - d[i].w);
memset(g,0,sizeof(g));
while(d[j].out <= d[i].in) j++;
for(int k = d[i].in + 1 ; k <= d[i].out ; k++) {
memcpy(g[k],g[k-1],sizeof(g[k]));
while(j < i && d[j].out == k) {
if(d[j].in < d[i].in) {
j++;
continue;
}
for(int l = 0 ; l <= t ; l++)
g[k][l] = max(g[k][l], g[d[j].in][l] + f[j][l]);
j++;
}
}
for(int k = 0 ; k <= t ; k++)
f[i][k + d[i].w] = g[d[i].out][k] + d[i].v;
for(int k = 1 ; k <= S ; k++)
f[i][k] = max(f[i][k], f[i][k - 1]);
}
printf("%d
", f[n][S]);
//system("pause");
return 0;
}