zoukankan      html  css  js  c++  java
  • bzoj4361 isn (dp+树状数组+容斥)

    我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn)$求出来

    然后我们让g[i]是长度为i的不降子序列的个数,答案就是$sum{g[i]*(N-i)!-g[i+1]*(N-i-1)!*(i+1)}$

    解释一下,因为他求的是不同的操作个数,所以我们给g[i]乘个(N-i)!,表示删的顺序;但其实我们有可能删的时候已经删出来了一个不降子序列。类似地,删多的的不同操作数是g[i+1]*(N-i-1)!,但我们还要从中再挑一个删下去,才和我们现在做的吻合,所以要乘个(i+1)

    (数据中貌似有0,然后我的zz离散化写法就华丽丽地T了)

     1 #include<bits/stdc++.h>
     2 #define pa pair<int,int>
     3 #define ll long long
     4 using namespace std;
     5 const int maxn=2020,mod=1e9+7;
     6 
     7 inline ll rd(){
     8     ll x=0;char c=getchar();int neg=1;
     9     while(c<'0'||c>'9'){if(c=='-') neg=-1;c=getchar();}
    10     while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    11     return x*neg;
    12 }
    13 
    14 int N,M,f[maxn][maxn],num[maxn];
    15 pa A[maxn];
    16 int tr[maxn],fac[maxn];
    17 
    18 inline int lowbit(int x){return x&(-x);}
    19 inline void add(int x,int y){
    20     for(;x<=M;x+=lowbit(x)) tr[x]=(tr[x]+y)%mod;
    21 }
    22 inline int query(int x){
    23     int re=0;for(;x;x-=lowbit(x)) re=(re+tr[x])%mod;return re;
    24 }
    25 
    26 int main(){
    27     int i,j,k;
    28     N=rd();fac[0]=1;
    29     for(i=1;i<=N;i++){
    30         A[i]=make_pair(rd(),i);
    31         fac[i]=(1LL*fac[i-1]*i)%mod;
    32     }sort(A+1,A+N+1);
    33     for(i=1,j=0;i<=N;i++){
    34         if(A[i].first!=A[i-1].first||i==1) j++;
    35         num[A[i].second]=j;
    36     }M=j;
    37     for(i=1;i<=N;i++) f[1][i]=1;
    38     f[1][0]=N;
    39     for(i=2;i<=N;i++){
    40         memset(tr,0,sizeof(tr));
    41         f[i][0]=0;
    42         for(j=i;j<=N;j++){
    43             add(num[j-1],f[i-1][j-1]);
    44             f[i][j]=query(num[j]);
    45             f[i][0]=(f[i][0]+f[i][j])%mod;
    46         }
    47     }int ans=0;
    48     for(i=1;i<=N;i++){
    49         if(!f[i][0]) break;
    50         ans=((0LL+ans+(1LL*f[i][0]*fac[N-i]%mod)-(1LL*f[i+1][0]*fac[N-i-1]%mod)*(i+1)%mod)%mod+mod)%mod;
    51     }printf("%d
    ",(ans+mod)%mod);
    52     return 0;
    53 }
    View Code
  • 相关阅读:
    【springcloud alibaba】配置中心之nacos
    【springcloud alibaba】注册中心之nacos
    LeetCode计数质数Swift
    LeetCode移除链表元素Swift
    LeetCode删除重复的电子邮箱SQL
    LeetCode汉明距离Swift
    LeetCode两整数之和Swift
    LeetCode从不订购的客户SQL
    LeetCode超过经理收入的员工SQL
    LeetCode组合两个表SQL
  • 原文地址:https://www.cnblogs.com/Ressed/p/9667015.html
Copyright © 2011-2022 走看看