zoukankan      html  css  js  c++  java
  • day10T3改错记

    题面

    (n + m)个判断题,事先知道有(n)道答案为(true)(m)道答案为(false)。每答一道题,你将知道是否答对。问用最优策略,期望最少答错多少道题?

    题外话

    题解并没有写出重点,导致我们一排六个人推了一下午式子没推出来,结果正确思路是看图得结论……

    解析

    显然最优策略是选多的那个答案,一样就随机选一个

    这个问题就可以转化为在下面的图中从((n, m))走到((0, 0))(假设(n ge m),另外的情况(swap)一下效果一样的)

    答案是任意一条从((n, m))((0, 0))的路径(比如蓝线)

    根据最优策略,一定是在红线左下的时候答(true),在右上的时候答(false),在红线上就随机走

    首先你一定至少答对(n)道题,因为左下部分的横线你一定能答对,右上部分的竖线你也一定能答对

    加起来恰好是(n)

    那么剩下的就是在红线上的点有(frac{1}{2})的贡献

    枚举每个红点((i, i)),那么有所有经过这个点的路径总共有这个点之前的({{n + m - 2 cdot i} choose {n - i}})乘上这个点之后的({{2 cdot i} choose {i}})条,题目求期望,再除以总方案数({n + m} choose {n})

    也就得到期望答对多少道题:

    [n + frac{sum_{i = 1}^{min(n, m)} {n + m - 2 cdot i choose n - i} cdot {2 cdot i choose i}}{2 cdot {n + m choose n}} ]

    (n + m)减这个就是答案了

    代码

    又是自带大常数的丑陋代码……

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #define MAXN 500005
    
    typedef long long LL;
    const int mod = 998244353;
    
    int qpower(int, int, int);
    void pre_work();
    int comb(int, int);
    
    int N, M, ans, fact[MAXN << 1], ifact[MAXN << 1], inv[MAXN << 1];
    
    inline void inc(int &x, int y) { x += y; if (x >= mod) x -= mod; }
    inline void dec(int &x, int y) { x -= y; if (x < 0) x += mod; }
    inline int add(int x, int y) { x += y; return x >= mod ? x - mod : x; }
    inline int sub(int x, int y) { x -= y; return x < 0 ? x + mod : x; }
    
    int main() {
    	freopen("fft.in", "r", stdin);
    	freopen("fft.out", "w", stdout);
    
    	scanf("%d%d", &N, &M);
    	if (N < M) std::swap(N, M);
    	pre_work();
    	for (int i = 1; i <= M; ++i)
    		inc(ans, (LL)comb(N + M - (i << 1), N - i) * comb(i << 1, i) % mod);
    	ans = (LL)ans * qpower(comb(N + M, N) * 2ll % mod, mod - 2, mod) % mod;
    	printf("%d
    ", sub(M, ans));
    
    	return 0;
    }
    int qpower(int x, int y, int p) {
    	int res = 1;
    	while (y) {
    		if (y & 1) res = (LL)res * x % p;
    		x = (LL)x * x % p; y >>= 1;
    	}
    	return res;
    }
    void pre_work() {
    	fact[0] = fact[1] = ifact[0] = ifact[1] = inv[1] = 1;
    	for (int i = 2; i <= (N + M); ++i) {
    		fact[i] = (LL)fact[i - 1] * i % mod;
    		inv[i] = (LL)(mod - mod / i) * inv[mod % i] % mod;
    		ifact[i] = (LL)ifact[i - 1] * inv[i] % mod;
    	}
    }
    int comb(int n, int m) {
    	return (LL)fact[n] * ifact[m] % mod * ifact[n - m] % mod;
    }
    //Rhein_E
    
  • 相关阅读:
    方法重载的小demo
    面向对象的小demo
    直接选择排序
    冒泡排序
    杨辉三角用java实现
    从键盘输入成绩,找出最高分,并输出学生成绩等级。成绩>=最高分-10,为A,成绩>=最高分-20,为B,成绩>=最高分-30,为C,其余等级为D
    井号的含义
    svg snap 笔记
    jQuery 插件格式 规范
    工作遇到问题
  • 原文地址:https://www.cnblogs.com/Rhein-E/p/10527859.html
Copyright © 2011-2022 走看看