zoukankan      html  css  js  c++  java
  • To the Max

    题目描述

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    输入

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    输出

    Output the sum of the maximal sub-rectangle.

    样例输入

    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    样例输出

    15

    分析:最大子矩阵和,动态规划在线处理即可。

    #include <iostream>
    #include <string>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <map>
    #define range(i,a,b) for(int i=a;i<=b;++i)
    #define LL long long
    #define rerange(i,a,b) for(int i=a;i>=b;--i)
    #define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
    using namespace std;
    int N,MAP[105][105];
    void init(){
        cin>>N;
        range(i,1,N)
        range(j,1,N){
            cin>>MAP[i][j];
            MAP[i][j]+=MAP[i-1][j];
        }
    }
    void solve(){
        int ans=0x80000000;
        range(i,1,N)
        range(j,i,N){
            int sum=0;
            range(k,1,N){
                sum+=MAP[j][k]-MAP[i-1][k];
                sum=sum<0?0:sum;
                ans=max(sum,ans);
            }
        }
        cout<<ans<<endl;
    }
    int main() {
        init();
        solve();
        return 0;
    }
    View Code
  • 相关阅读:
    ex3多类问题和NN中的前向传播
    逻辑关系下的NN应用
    NN-Neural Network
    ex2:逻辑回归及正则条件下的练习
    Overfitting&Underfitting Problems
    操作系统内存管理之虚拟内存
    C陷阱与缺陷读书笔记(三)
    操作系统常见面试题
    计算机网络常考面试题总结
    堆及堆排序
  • 原文地址:https://www.cnblogs.com/Rhythm-/p/9318453.html
Copyright © 2011-2022 走看看