题目描述
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
输入
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
输出
Output the sum of the maximal sub-rectangle.
样例输入
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
样例输出
15
分析:最大子矩阵和,动态规划在线处理即可。
#include <iostream> #include <string> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <vector> #include <queue> #include <map> #define range(i,a,b) for(int i=a;i<=b;++i) #define LL long long #define rerange(i,a,b) for(int i=a;i>=b;--i) #define fill(arr,tmp) memset(arr,tmp,sizeof(arr)) using namespace std; int N,MAP[105][105]; void init(){ cin>>N; range(i,1,N) range(j,1,N){ cin>>MAP[i][j]; MAP[i][j]+=MAP[i-1][j]; } } void solve(){ int ans=0x80000000; range(i,1,N) range(j,i,N){ int sum=0; range(k,1,N){ sum+=MAP[j][k]-MAP[i-1][k]; sum=sum<0?0:sum; ans=max(sum,ans); } } cout<<ans<<endl; } int main() { init(); solve(); return 0; }