题目描述
Consider the number triangle shown below. Write a program that calculates the highest sum of numbers that can be passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.
输入
The first line contains R (1 <= R <= 1000), the number of rows. Each subsequent line contains the integers for that particular row of the triangle. All the supplied integers are non-negative and no larger than 100.
输出
A single line containing the largest sum using the traversal specified.
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
30
分析:
我就说是个DP题,递什么归递归。
设dp[i][j]表示从底层走到达坐标[i][j]的最大值,从底向上扫,状态转移方程为dp[i][j]+=max(dp[i+1][j],dp[i+1][j+1])。
#include <iostream> #include <string> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <vector> #include <queue> #define range(i,a,b) for(int i=a;i<=b;++i) #define rerange(i,a,b) for(int i=a;i>=b;--i) #define fill(arr,tmp) memset(arr,tmp,sizeof(arr)) using namespace std; int n,dp[1005][1005]; void init(){ cin>>n; range(i,1,n)range(j,1,i)cin>>dp[i][j]; rerange(i,n-1,1) range(j,1,i)dp[i][j]+=max(dp[i+1][j],dp[i+1][j+1]); } void solve(){ cout<<dp[1][1]<<endl; } int main() { init(); solve(); return 0; }