zoukankan      html  css  js  c++  java
  • 数论(7):康托展开&逆康托展开

    康托展开可以用来求一个 (1sim n) 的任意排列的排名。

    什么是排列的排名?

    (1sim n) 的所有排列按字典序排序,这个排列的位次就是它的排名。

    时间复杂度?

    康托展开可以在 (O(n^2)) 的复杂度内求出一个排列的排名,在用到树状数组优化时可以做到 (O(nlog n))

    怎么实现?

    因为排列是按字典序排名的,因此越靠前的数字优先级越高。也就是说如果两个排列的某一位之前的数字都相同,那么如果这一位如果不相同,就按这一位排序。

    比如 (4) 的排列, ([2,3,1,4]<[2,3,4,1]) ,因为在第 (3) 位出现不同,则 ([2,3,1,4]) 的排名在 ([2,3,4,1]) 前面。

    举个栗子

    我们知道长为 (5) 的排列 ([2,5,3,4,1]) 大于以 (1) 为第一位的任何排列,以 (1) 为第一位的 (5) 的排列有 (4!) 种。这是非常好理解的。但是我们对第二位的 (5) 而言,它大于 第一位与这个排列相同的,而这一位比 (5) 小的 所有排列。不过我们要注意的是,这一位不仅要比 (5) 小,还要满足没有在当前排列的前面出现过,不然统计就重复了。因此这一位为 (1,3)(4) ,第一位为 (2) 的所有排列都比它要小,数量为 (3 imes 3!)

    按照这样统计下去,答案就是 (1+4!+3 imes 3!+2!+1=46) 。注意我们统计的是排名,因此最前面要 (+1)

    注意到我们每次要用到 当前有多少个小于它的数还没有出现 ,这里用树状数组统计比它小的数出现过的次数就可以了。

    原理总结:

    [X = A[0] * (n-1)! + A[1] * (n-2)! + … + A[n-1] * 0!\ (A[i]表示在位置i后比位置i上数小的数的个数) ]

    • 注意到我们每次要用到 当前有多少个小于它的数还没有出现
    • 这里用树状数组统计比它小的数出现过的次数就可以了,可以优化到 O(nlogn)

    代码

    先预处理阶乘:

    void init(){
        fact[0] = 1;
        for(int i = 2;i <= 9; ++i) fact[i] = fact[i - 1]  * i;
        //递推求阶乘
    }
    //或者直接打表
    int fact[10] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
    

    (cantor) 函数

    int cantor(int a[],int n){
        int ans = 0;
        for(int i = 0;i < n; ++i){
            int cnt = 0;
            for(int j = i + ;j < n; ++j)++cnt;
            // 找到a[i]是当前数列中未出现的数中第几小的
            // 从1开始,即1-n的全排列
            // 从0开始,就变成了0-n的全排列,记得变通
            ans += cnt * fact[n - i - 1];
        }
        return ans + 1;//如果输出的是排名就要 + 1,如果是hash值可以直接返回 ans
    }
    

    逆康托展开

    而逆康托展开相当于,反过来操作

    因为排列的排名和排列是一一对应的,所以康托展开满足双射关系,是可逆的。可以通过类似上面的过程倒推回来。

    如果我们知道一个排列的排名,就可以推出这个排列。因为 (4!) 是严格大于 (3 imes 3!+2 imes 2!+1 imes 1!) 的,所以可以认为对于长度为 (5) 的排列,排名 (x) 除以 (4!) 向下取整就是有多少个数小于这个排列的第一位。

    引用上面展开的例子

    首先让 (46-1=45)(45) 代表着有多少个排列比这个排列小。 (lfloorfrac {45}{4!} floor=1) ,有一个数小于它,所以第一位是 (2)

    此时让排名减去 (1 imes 4!) 得到 (21)(lfloorfrac {21}{3!} floor=3) ,有 (3) 个数小于它,去掉已经存在的 (2) ,这一位是 (5)

    (21-3 imes 3!=3)(lfloorfrac {3}{2!} floor=1) ,有一个数小于它,那么这一位就是 (3)

    (3-1 imes 2!=1) ,有一个数小于它,这一位是剩下来的第二位, (4) ,剩下一位就是 (1) 。即 ([2,5,3,4,1])

    实际上我们得到了形如 有两个数小于它 这一结论,就知道它是当前第 (3) 个没有被选上的数,这里也可以用线段树维护,时间复杂度为 (O(nlog n))

    代码

    vector<int> incantor(int x,int n){
        x--;//得到从0开始的排名
        vector<int> res(n); //保存数列答案
        int cnt;
        bool st[10]; //标记数组
        memset(st,false,sizeof st);
        for(int i = 0;i < n; ++i){
            cnt = x / fact[n - i - 1]; // 比a[i]小且没有出现过的数的个数
            x %= fact[n - i - 1]; //更新 x
            for(int j = 1; j <= n; ++j){// 找到a[i],从1开始向后找
                if(st[j]) continue; // 如果被标记过,就跳过
                if(!cnt){ // 如果cnt == 0说明当前数是a[i]
                    st[j] = 1; //标记
                    res[i] = j; // 第i位是j
                    break;
                }
                cnt--; // 如果当前不是0,就继续往后找
            }
        }
        return res;// 返回答案
    }
    

    The desire of his soul is the prophecy of his fate
    你灵魂的欲望,是你命运的先知。

  • 相关阅读:
    6-MySQL-Ubuntu-操作数据表的基本操作(一)
    5-MySQL-Ubuntu-操作数据库的基本操作语句
    11-Ubuntu-根目录下各目录的功能详细介绍
    4-Ubuntu-启动/关闭/重启mysql服务
    3-Windows-CMD启动mysql服务-连接本地mysql服务-连接远程mysql服务
    2-Ubuntu命令安装mysql服务器和客户端及安装后的简单验证操作
    1-Navicat无法远程连接Ubuntu上的MySQL(已解决)
    10-python基础—索引与切片总结
    Useful Things To Know About Machine Learning (机器学习中一些有用的知识)
    How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python 译文
  • 原文地址:https://www.cnblogs.com/RioTian/p/13750367.html
Copyright © 2011-2022 走看看