zoukankan      html  css  js  c++  java
  • i 的二次幂求和

    学习 自为风月马前卒 大佬的数学笔记

    (i^2) 求和

    查阅资料我们很容易就发现 (sum_{i = 1}^ni^2 = frac{n(n + 1)(2n + 1)}{6})

    但具体怎么求得的呢?今天偶然间在 Miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

    我们要求 (S_n = sum_{i = 1}^ni^2),现在我们对 (C_n = sum_{i = 1}^ni^3) 进行转换

    首先列一个恒等式

    [sum_{i = 1}^{n + 1}i^3 = C_n + (n + 1)^3 ]

    这里有个骚操作是把前面的转化一下

    [sum_{i = 0}^{n}(i+ 1)^3 = C_n + (n + 1)^3 ]

    然后就可以推柿子啦,

    [sum_{i = 0}^ni^3+3i^2+3i+1 = C_n + (n + 1)^3 \ C_n + 3S_n + 3frac{n(n + 1)}{2} + (n + 1) = C_n + (n + 1)^3\ Rightarrow S_n=frac{2(n + 1)^3 - 3n(n + 1)-2(n +1)}{6}\ =frac{n(n+1)(2n+1)}{6} ]

    同时这个方法具有非常强的扩展性,我们也可以推导出 (i^k) 的公式,但是计算起来的复杂度却是(k^2)的,感觉还是拉格朗日插值 (klogk) 好用一些

    (1,2,…n) 带入维护前缀积后缀积可以做到 (k logk)

    The desire of his soul is the prophecy of his fate
    你灵魂的欲望,是你命运的先知。

  • 相关阅读:
    epplus
    http://www.cmake.org/
    patheditor2
    emgu cv
    OpenCV
    Tesseract
    Blendar基金会
    安装服务windows,installutil
    R 软件
    历史为什么选择C语言?事实证明:暮年的C语言,依旧宝刀未老!
  • 原文地址:https://www.cnblogs.com/RioTian/p/14603220.html
Copyright © 2011-2022 走看看