补题链接:Here
A - Don't be late
题意:高桥(Takahashi )现在要去距离家 (D) 米的地方面基,请问如果以最高速度 (S) 能否再 (T) 时刻准时到达?
(cout << (d / s <= t ? "Yes" : "No");)
注意点使用
float
B - Substring
注意到 S
和 T
长度很小,所有可以枚举
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
string s, t;
cin >> s >> t;
int n = s.size(), m = t.size();
int ans = m;
for (int start = 0; start <= n - m; ++start) {
int cnt = 0;
for (int i = 0; i < m; ++i)
if (t[i] != s[start + i]) cnt++;
ans = min(ans, cnt);
}
cout << ans << "
";
return 0;
}
C - Sum of product of pairs
维护后缀和,记得取模即可
using ll = long long;
const ll mod = 1e9 + 7;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n;
cin >> n;
ll a[n + 1], lst[n + 2] = {};
for (int i = 1; i <= n; ++i) cin >> a[i];
for (int i = n; i >= 1; --i) {
lst[i] = (lst[i + 1] % mod + (i == n ? 0 : a[i + 1]) % mod) % mod;
}
ll ans = 0;
for (int i = 1; i < n; ++i) {
ans = (ans + a[i] * lst[i] + mod) % mod;
}
cout << ans % mod << "
";
return 0;
}
D - Friends
题意:给定 n 个人的 m 对朋友关系,现在进行最小化分组要是每个组里都没有互相认识的人,
思路:并查集,求出最大连通分量即可
- (mathcal{O}(NlogN))
const int N = 2e5 + 7;
int f[N], Siz[N];
int find(int x) {
return f[x] == x ? x : f[x] = find(f[x]);
}
void merge(int x, int y) {
x = find(x), y = find(y);
if (x != y)
f[x] = y, Siz[y] += Siz[x];
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n, m;
for (int i = 1; i <= N - 1; ++i) f[i] = i, Siz[i] = 1;
cin >> n >> m;
while (m--) {
int x, y;
cin >> x >> y;
merge(x, y);
}
sort(Siz, Siz + n + 1);
cout << Siz[n];
return 0;
}
E - Coprime
质因数分解,统计含有每个质因子的数的个数,然后求出最大的个数。如果这个值为 (1),说明两两互质;如果这个值小于(N),说明总体互质。
int cnt[1 << 20];
int all = 0;
bool isp[1 << 20];
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n;
cin >> n;
for (int i = 0, x; i < n; ++i) {
cin >> x;
cnt[x]++;
all = gcd(all, x);
}
bool f = true;
for (int i = 2; i < (1 << 20); ++i) {
int sum = 0;
for (int j = i; j < (1 << 20); j += i) sum += cnt[j];
if (sum > 1) f = false;
}
cout << (f ? "pairwise coprime" : all == 1 ? "setwise coprime"
: "not coprime");
return 0;
}
AtCoder Beginner Contest 177