zoukankan      html  css  js  c++  java
  • 【每日一题】14.Accumulation Degree(树形DP + 二次扫描)

    补题链接:Here

    一个树形水系,有 (n) 个结点,根结点称为源点,叶子结点称为汇点,每条边都有水量限制$C(x,y) (()x,y$ 为这条边的两个端点),源点单位时间流出的水量称为整个水系的流量,求以哪一个结点作为源点整个水系的流量最大。

    首先得理解到这是一道“不定根”的树形DP问题,这类题目的特点是,给定一个树形结构,需要以每个结点为根进行一系列统计。我们一般通过两次扫描来求解此类问题:(也即:二次扫描与换根法

    • 第一次扫描时任选一个点为根,在“有根树”上执行一次“树形DP”,也就是在回溯时发生的、自底向上的状态转移。
    • 第二次扫描,从刚才选出的根出发,对整棵树执行一次DFS,在每次递归前进行自上而下的推导,计算出“换根”之后的解。

    首先,我们任选一个结点 root ,然后树形DP一下,求出 (D_{root}) 数组( (D[i]) 表示在以 (i) 为根的子树中流量的最大值)。然后设 (f_x) 表示以 (x) 为源点,流向整个水系的最大流量,则显然 (f_{root} = D_{root}) 假设 (f_x) 已经求出,考虑其子结点 (y) ,则 (f[y]) 包含两部分:

    1. (y) 流向以 (y) 为根的子树的流量,已经计算出来。
    2. (y) 沿着到父节点 (x) 的河道,进而流向水系中其他部分的流量。

    由题意可知,从 (x) 流向 (y) 的流量为 (min(D_y,c_{x,y})) ,所以从 (x) 流向除 (y) 以外其他部分的流量分量是其两者之差:(f_x - min(D_y,c_{x,y})) 于是,把 (y) 作为源点,先从流到 (x),再流向其他部分的流量就是吧这个“差值”再与 (c_{x,y}) 取较小值后的结果

    [if(deg[x] > 1) o f[y] = D[y] + min(f[x] - min(D[y],c[x][y]) - c[x][y])\ if(deg[x] == 1) o f[y] = D[y] + c[x][y] ]

    这是一个由下而上的递推方程,所以我们可以通过一次DFS来完成

    AC 代码

    // Murabito-B 21/04/26
    #include <bits/stdc++.h>
    using namespace std;
    #define fi first
    #define se second
    const int N = 2e5 + 5;
    using pii   = pair<int, int>;
    vector<pii> g[N];
    int dp[N], d[N], f[N];
    void dfs(int u, int fa) {
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i].fi, w = g[u][i].se;
            if (v == fa) continue;
            dfs(v, u);
            if (d[v] == 1) dp[u] += w;
            else
                dp[u] += min(dp[v], w);
        }
    }
    void dfs1(int u, int fa) {
        f[u] = dp[u];
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i].fi, w = g[u][i].se;
            if (v == fa) continue;
            if (d[v] == 1) {
                dp[u] -= w;
                dp[v] += min(dp[u], w);
            } else {
                dp[u] -= min(w, dp[v]);
                dp[v] += min(w, dp[u]);
            }
            dfs1(v, u);
        }
    }
    void solve() {
        int n;
        cin >> n;
        for (int i = 1; i <= n; ++i) {
            g[i].clear();
            d[i] = dp[i] = f[i] = 0;
        }
        for (int i = 1; i < n; ++i) {
            int u, v, w;
            cin >> u >> v >> w;
            g[u].push_back({v, w});
            g[v].push_back({u, w});
            d[u]++, d[v]++;
        }
        dfs(1, -1);
        // f[1] = dp[1];
        dfs1(1, -1);
        int ans = 0;
        for (int i = 1; i <= n; ++i) ans = max(ans, f[i]);
        cout << ans << '
    ';
    }
    int main() {
        ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
        int _;
        for (cin >> _; _--;) solve();
        return 0;
    }
    

    The desire of his soul is the prophecy of his fate
    你灵魂的欲望,是你命运的先知。

  • 相关阅读:
    php数据库搜索用法
    实现留言板功能
    php对数据库的增删改
    签到 登录注册注意事项
    JavaScript复习 js登录简单实现 dom操作练习
    数据库表格老师学生教师表练习题
    数据控制语言
    数据操作语言
    数据库表的定义、视图与设计
    php变量
  • 原文地址:https://www.cnblogs.com/RioTian/p/14706436.html
Copyright © 2011-2022 走看看