zoukankan      html  css  js  c++  java
  • HDU2050离散数学折线分割平面

    折线分割平面

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24505    Accepted Submission(s): 16644


    Problem Description
    我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
     
    Input
    输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。

     
    Output
    对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

     
    Sample Input
    2 1 2
     
    Sample Output
    2 7
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  2046 2045 2044 2049 2041 

    递推公式为:

    a[1]=2;
    for (i=2;i<100;i++)
    a[i]=4*i-3+a[i-1];

    for (i=1;i<100;i++)
    a[i]=2*i*i-i+1;
    可以互相转化 利用离散数学的知识

    规律为:a[n]=(2*(n-1)-1)*2+3+a[n-1];

    第n条折线的两条边都与前n-1条折线的所有边都不平行,因为他们都是相交的;

    第n条折线的第一条边要与前n-1条折线的2*(n-1)条边都相交,每与 两个 边相交就增加一个分割开的部分,所以有2*(n-1)-1个被分割的部分在这里被增加,另外一条第n条折线的边也增加2*(n-1)-1个部分,另外最后第n第折线的两边还要向外无限延伸,与它们相交的最后一个前n-1个折线中的边与其分别构成了一个多余的部分,而第n条折线的头部也是一个独立的部分,所以2*(n-1)-1再+3,就是比n-1条折线分割成的部分多出的部分数,所以有:a[n]=(2*(n-1)-1)*2+3+a[n-1];

    画一下图,让每条边都与其他的边全都相交,就能找到规律了。

    #include <iostream>
    using namespace std;
    int main()
    {
        int i,n,a[10005],t;
        for (i=1;i<10005;i++)
        a[i]=2*i*i-i+1;
        cin>>t;
        while(cin>>n&&t--)
        cout<<a[n]<<endl;
        return 0;
    }
  • 相关阅读:
    ToastCustomUtil【简单的Toast封装类】【自定义Toast的显示风格】
    ToastMiui【仿MIUI的带有动画的Toast】
    ToastCustom【自定义显示风格的Toast】
    用现实生活的例子解释非对称加密
    对称加密、非对称加密、数字签名、数字证书、SSL是什么
    公钥和私钥:确认过眼神 是对的人
    如何拿到美团offer的
    http无状态和鉴权解决四种方案
    java网络编程-面试题
    Java网络编程面试总结
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5425370.html
Copyright © 2011-2022 走看看