zoukankan      html  css  js  c++  java
  • 欧拉数 (Eulerian Number)

    [ ewcommand{e}{mathrm{e}} egin{aligned} leftlangleegin{matrix}n \ iend{matrix} ight angle&=sum_{j=i}^{n-1}(-1)^{j-i} inom ji imes n![x^n](e^x - 1) ^ {n - j}\ &=sum_{j=i}^{n-1}(-1)^{j-i}inom ji imes n! [x^n] sum_{k=0}^{n-j}e^{kx}(-1)^k inom{n-j}k \ &=sum_{j=i}^{n-1}(-1)^{j-i}inom ji sum_{k=0}^{n-j} k^n (-1)^{n-j-k} inom{n-j}k\ &=sum_{k=1}^{n-i} k^n (-1)^{n-i-k} sum_{j=0}^{n-k} inom{n-j}k inom ji \ &=sum_{k=1}^{n-i} k^n (-1)^{n-i-k}inom{n+1}{k+i+1} \ &=sum_{k=1}^{i+1} k^n (-1)^{n-(n-1-i)} inom{n+1}{k+(n-1-i)+1} \ &=sum_{k=1}^{i+1} k^n (-1)^{i+1-k} inom{n+1}{i+1-k} \ &=sum_{k=0}^i (k+1)^n (-1)^{i-k} inom{n+1}{i-k} \ &=sum_{k=0}^i (i+1-k)^n (-1)^k inom{n+1}{k} end{aligned} ]

  • 相关阅读:
    iOS--异步下载
    linux搭建ftp服务器
    hexo常用命令
    Markdown入门
    Markdown 语法和 MWeb 写作使用说明
    vi/vim
    微信聊天机器人
    .vimrc
    配置双机
    python学习笔记(一)
  • 原文地址:https://www.cnblogs.com/RiverHamster/p/eulerian-number.html
Copyright © 2011-2022 走看看