zoukankan      html  css  js  c++  java
  • Codeforces Educational Round #95 题解

    E. Expected Damage

    强度 (ge b) 的怪物地位是相同的,(< b) 同理,可以直接取平均值。

    (ge b) 的贡献很容易计算,(<b) 的考虑分开计算,设有 (c) 个强度 (ge b) 的,那么每个 (<b) 的怪物对答案有贡献的概率是 (frac{c + 1 - a}{c + 1})(只考虑 (ge b) 的和它本身)。

    复杂度 (mathcal O((n + q)log n + q log mod))

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #include <vector>
    using namespace std;
    using ll = long long;
    
    namespace io {
    #define File(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
      const int SIZE = (1 << 21) + 1;
      char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1;
      inline char getc () {return (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++);}
      inline void flush () {fwrite (obuf, 1, oS - obuf, stdout); oS = obuf;}
      inline void putc (char x) {*oS ++ = x; if (oS == oT) flush ();}
      template<class T>
      inline void read(T &x) {
        char ch; int f = 1;
        x = 0;
        while(isspace(ch = getc()));
        if(ch == '-') ch = getc(), f = -1;
        do x = x * 10 + ch - '0'; while(isdigit(ch = getc()));
        x *= f;
      }
      template<class T, class ...Args>
      inline void read(T &x, Args&... args) {read(x); read(args...);}
      template<class T>
      inline void write(T x) {
        static char stk[128];
        int top = 0;
        if(x == 0) {putc('0'); return;}
        if(x < 0) putc('-'), x = -x;
        while(x) stk[top++] = x % 10, x /= 10;
        while(top) putc(stk[--top] + '0');
      }
      template<class T, class ...Args>
      inline void write(T x, Args... args) {write(x); putc(' '); write(args...);}
      inline void space() {putc(' ');}
      inline void endl() {putc('
    ');}
      struct _flush {~_flush() {flush();}} __flush;
    };
    using io::read; using io::write; using io::flush; using io::space; using io::endl; using io::getc; using io::putc;
    
    const int M = 998244353;
    inline int add(int x, int y) {return x+y>=M ? x+y-M : x+y;}
    template<class ...Args> inline int add(int x, int y, Args... args) {return add(add(x, y), args...);}
    inline int sub(int x, int y) {return x-y<0 ? x-y+M : x-y;}
    inline int mul(int x, int y) {return 1LL * x * y % M;}
    template<class ...Args> inline int mul(int x, int y, Args... args) {return mul(mul(x, y), args...);}
    inline void inc(int &x, int y=1) {x += y; if(x >= M) x -= M;}
    inline void dec(int &x, int y=1) {x -= y; if(x < 0) x += M;}
    inline int power(int x, int y){
      int res = 1;
      for(; y; y>>=1, x = mul(x, x)) if(y & 1) res = mul(res, x);
      return res;
    }
    inline int inv(int x){return power(x, M - 2);}
    
    const int N = 200005;
    int d[N], s[N];
    
    int main() {
      // File("cf1418e");
      int n, m;
      read(n, m);
      int facn = 0;
      for (int i = 1; i <= n; ++i)
        facn = 1LL * facn * i % M;
      for (int i = 1; i <= n; ++i)
        read(d[i]);
      sort(d + 1, d + 1 + n);
      for (int i = 1; i <= n; ++i) s[i] = (s[i - 1] + d[i]) % M;
      for (int i = 1; i <= m; ++i) {
        int a, b;
        read(a, b);
        int L = lower_bound(d + 1, d + 1 + n, b) - d - 1, H = n - L;
        if (H < a) {
          write(0), endl();
          continue;
        }
        int sH = sub(s[n], s[n - H]), sL = s[L];
        int avgH = mul(sH, inv(H));
        int cH = mul(H - a, avgH);
        int cL = mul(H + 1 - a, inv(H + 1), sL);
        write(add(cH, cL)), endl();
      }
      return 0;
    }
    

    F. Equal Product

    (x_1y_1 = x_2y_2)

    [frac{x_1}{y_2} = frac{x_2}{y_1} = frac{a}{b} qquad gcd(a, b) = 1 ]

    枚举 (x_1),算出 (y_1) 的范围 ([frac{L}{x_1}, min{frac{R}{x_1},m}]),枚举 (a mid x_1)

    (x_2 = ka),由 (k) 可以算出 (b) 的范围,这可以整除分块,注意到上限是 (m)

    逐一检查即可,代码写的很清楚。复杂度上界 (mathcal O(n^{1.5} log n))

    跑的很快,可能可以分析出更优的上界。

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #include <vector>
    #include <cassert>
    using namespace std;
    using ll = long long;
    
    namespace io {
    #define File(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
      const int SIZE = (1 << 21) + 1;
      char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1;
      inline char getc () {return (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++);}
      inline void flush () {fwrite (obuf, 1, oS - obuf, stdout); oS = obuf;}
      inline void putc (char x) {*oS ++ = x; if (oS == oT) flush ();}
      template<class T>
      inline void read(T &x) {
        char ch; int f = 1;
        x = 0;
        while(isspace(ch = getc()));
        if(ch == '-') ch = getc(), f = -1;
        do x = x * 10 + ch - '0'; while(isdigit(ch = getc()));
        x *= f;
      }
      template<class T, class ...Args>
      inline void read(T &x, Args&... args) {read(x); read(args...);}
      template<class T>
      inline void write(T x) {
        static char stk[128];
        int top = 0;
        if(x == 0) {putc('0'); return;}
        if(x < 0) putc('-'), x = -x;
        while(x) stk[top++] = x % 10, x /= 10;
        while(top) putc(stk[--top] + '0');
      }
      template<class T, class ...Args>
      inline void write(T x, Args... args) {write(x); putc(' '); write(args...);}
      inline void space() {putc(' ');}
      inline void endl() {putc('
    ');}
      struct _flush {~_flush() {flush();}} __flush;
    };
    using io::read; using io::write; using io::flush; using io::space; using io::endl; using io::getc; using io::putc;
    
    const int N = 200004;
    vector<int> divisor[N];
    
    int main() {
      // File("cf1418f");
      int n, m;
      ll L, R;
      read(n, m, L, R);
      for (int i = 1; i <= n; ++i)
        for (int j = i; j <= n; j += i)
          divisor[j].push_back(i);
      for (int x1 = 1; x1 < n; ++x1) { // x1 / y2 = x2 / y1 = a / b, where gcd(a, b) = 1
        ll left = max((L - 1) / x1 + 1, 1LL), right = min(R / x1, ll(m)); // bound for y1
        // x1 * y1 in [L, R], left, right in [1, m]
        if (left > right) {
          write(-1), endl();
          continue;
        }
        bool flag = false;
        for (int d : divisor[x1]) {
          int a = x1 / d;
          for (int k = x1 / a + 1, li = n / a, nxt; k <= li; k = nxt + 1) { // x2 = k * a
            nxt = 0x3fffffff;
            if (left > k) nxt = min(ll(nxt), (left - 1) / ((left - 1) / k));
            if (right >= k) nxt = min(ll(nxt), right / (right / k));
            int lb = (left - 1) / k + 1, rb = right / k; // bound for b, since y1 = kb
            if (lb <= rb && lb * d <= m) {
              write(x1, k * lb, k * a, d * lb), endl();
              flag = true;
              break;
            }
          }
          if (flag) break;
        }
        if(!flag) write(-1), endl();
      }
      write(-1), endl();
      return 0;
    }
    
  • 相关阅读:
    angularJS解决数据显示闪一下的问题?-解决办法
    js 做账单处理
    淘宝cnpm
    js 对象转数组
    js 移动端上拉刷新(基于ng1)
    js 控制超出字数显示省略号
    select2 插件编辑时设置默认值
    select2 插件加载后端数据
    js 依据“;”折行
    css 两段对齐和超出部分...
  • 原文地址:https://www.cnblogs.com/RiverHamster/p/sol-cf1418.html
Copyright © 2011-2022 走看看