zoukankan      html  css  js  c++  java
  • 杭州邀请赛

    hdu 4576

    题意:在一个环里从起点随机走c步,一共走m次,问最后站在l~r的概率是多少?

    分析:常数优化,想不到就作死。

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<vector>
     8 #include<map>
     9 #include<set>
    10 #define lson l,m,rt<<1
    11 #define rson m+1,r,rt<<1|1
    12 #define pbk push_back
    13 #define mk make_pair
    14 using namespace std;
    15 const int N = 10000+10;
    16 typedef pair<int,int> pii;
    17 typedef long long LL;
    18 int n,m,l,r;
    19 double dp[2][N];
    20 int c[1000000+10],vis[N];
    21 const double eps = 1e-10;
    22 inline int dcmp(double x){
    23     return x < -eps ? -1 : x>eps;
    24 }
    25 void solve(){
    26     memset(dp,0,sizeof(dp));
    27     dp[0][1] = 1;
    28     int pos = 0;
    29     int flag = 0;
    30     for (int i = 0; i < m; i++) {
    31         for (int j = 1; j <= n; j++) {
    32             int v = j + c[i];
    33             while (v > n) v -= n;
    34             dp[pos^1][j] = dp[pos][v]*0.5;
    35             v = j - c[i];
    36             while (v <= 0) v += n;
    37             dp[pos^1][j] += dp[pos][v]*0.5;
    38         }
    39         pos ^= 1;
    40     }
    41     double ret = 0;
    42     for (int i = 1; i <= n; i++) {
    43         if (i >= l && i <= r)
    44         ret += dp[pos][i];
    45     }
    46     printf("%.4lf
    ",ret);
    47 }
    48 int main(){
    49     while (~scanf("%d%d%d%d",&n,&m,&l,&r),n+m+l+r) {
    50 
    51         for (int i = 0; i < m; i++) {
    52             scanf("%d",c+i);
    53         }
    54         solve();
    55     }
    56 
    57     return 0;
    58 }
    View Code

    hdu 4577

    题意:1~n个球,给你k个盒子,从第一个盒子开始放,如果第一个盒子放了i,那么下一个盒子一定必须有i*2,一个球只能放一个盒子;

    问第一个盒子做的放几个球;

    分析:显然n/(pow(2,k-1))后所有奇数都是不会重复的答案,然后考虑偶数情况,如果n/(pow(2,2k-1)),那么对于此时起点是奇数的显然可以统计两次,起点为奇数的已经统计过,

    而起点是偶数的显然没有统计过于是统计,依次统计n/(pow(2,jk-1));

    例如:   12 2

    1 2

    2 4

    3 6

    4 8

    5 10

    6 12

    先统计 (1,2)(3,6)(5,10);

    1 2 4 8

    统计 (4,8);

     1 import java.util.*;
     2 import java.math.*;
     3 import java.io.*;
     4 
     5 class Work {
     6     public void main(){
     7         Scanner cin = new Scanner(System.in);
     8         int T;
     9         T = cin.nextInt();
    10         for (int i = 0; i < T; i++) {
    11             BigInteger n = cin.nextBigInteger();
    12             int k = cin.nextInt();
    13             BigInteger ans = BigInteger.ZERO;
    14             BigInteger  p = BigInteger.valueOf(2).pow(k-1);
    15             while(true){
    16                 n = n.divide(p);
    17                 if (n.compareTo(BigInteger.ZERO) == 0) break;
    18                 ans = ans.add(n.subtract(n.divide(BigInteger.valueOf(2))));
    19                 n = n.divide(BigInteger.valueOf(2));
    20             }
    21             System.out.println(ans);
    22         }
    23     }
    24 }
    25 
    26 public class Main {
    27     public static void main(String[] args) {
    28         Work t = new Work();
    29         t.main();
    30     }
    31 
    32 }
    View Code

    hdu 4578

    题意:给你3种操作,询问区间和,和的平方,和的立方;

    分析:线段树,分别记录下区间和,和的平方,和的立方;

    然后操作分3种要按一定的顺序来pushdown下去,先更新cov标记,然后在更新mul,最后更新add;

    当然在update的时候要转化,比如原先已经有了mul和add表示,再来 乘c,就要更新标记 mul*c,add*c

    再比如来了操作3,c,就要情况mul和add;具体可以看代码;代码一是本人拙计代码;代码二来自YCL

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<cstdlib>
      4 #include<iostream>
      5 #include<algorithm>
      6 #include<cmath>
      7 #define lson l,m,rt<<1
      8 #define rson m+1,r,rt<<1|1
      9 using namespace std;
     10 const int N = 100000+10;
     11 const int M = 10007;
     12 int sum[4][N<<2];
     13 int c1,c2,c3;
     14 int n,m;
     15 int col[4][N<<2];
     16 void pushdown(int rt,int l, int m,int r) {
     17     int c1,c2,c3;
     18     if (col[2][rt]) {
     19         c1 = col[2][rt] % M; c2 = c1 * c1 % M; c3 = c1 * c2 % M;
     20         sum[3][rt<<1] = (m - l + 1) * c3 % M;
     21         sum[2][rt<<1] = (m - l + 1) * c2 % M;
     22         sum[1][rt<<1] = (m - l + 1) * c1 % M;
     23         sum[3][rt<<1|1] = (r - m) * c3 % M;
     24         sum[2][rt<<1|1] = (r - m) * c2 % M;
     25         sum[1][rt<<1|1] = (r - m) * c1 % M;
     26         col[1][rt<<1] = col[1][rt<<1|1] = 1;
     27         col[0][rt<<1] = col[0][rt<<1|1] = 0;
     28         col[2][rt<<1] = col[2][rt<<1|1] = col[2][rt] % M;
     29         col[2][rt] = 0;
     30     }
     31     c1 = col[1][rt] % M; c2 = c1 * c1 % M; c3 = c1 * c2 % M;
     32 
     33     sum[3][rt<<1] = ( sum[3][rt<<1] * c3 ) % M;
     34     sum[2][rt<<1] = ( sum[2][rt<<1] * c2 ) % M;
     35     sum[1][rt<<1] = ( sum[1][rt<<1] * c1 ) % M;
     36     sum[3][rt<<1|1] = ( sum[3][rt<<1|1] * c3 ) % M;
     37     sum[2][rt<<1|1] = ( sum[2][rt<<1|1] * c2 ) % M;
     38     sum[1][rt<<1|1] = ( sum[1][rt<<1|1] * c1 ) % M;
     39     c1 = col[0][rt] % M; c2 = c1 * c1 % M; c3 = c1 * c2 % M;
     40     sum[3][rt<<1] = ( sum[3][rt<<1] + 3*c1*sum[2][rt<<1] + 3*c2*sum[1][rt<<1] + (m-l+1)*c3 ) % M;
     41     sum[2][rt<<1] = ( sum[2][rt<<1] + 2*c1*sum[1][rt<<1] + (m-l+1)*c2 ) % M;
     42     sum[1][rt<<1] = ( sum[1][rt<<1] + (m-l+1)*c1 ) % M;
     43 
     44     sum[3][rt<<1|1] = ( sum[3][rt<<1|1] + 3*c1*sum[2][rt<<1|1] + 3*c2*sum[1][rt<<1|1] + (r-m)*c3 ) % M;
     45     sum[2][rt<<1|1] = ( sum[2][rt<<1|1] + 2*c1*sum[1][rt<<1|1] + (r-m)*c2 ) % M;
     46     sum[1][rt<<1|1] = ( sum[1][rt<<1|1] + (r-m)*c1 ) % M;
     47 
     48     col[1][rt<<1] = (col[1][rt<<1] * col[1][rt]) % M;
     49     col[1][rt<<1|1] = (col[1][rt<<1|1] * col[1][rt]) % M;
     50     col[0][rt<<1] = (col[0][rt<<1] * col[1][rt] + col[0][rt]) % M;
     51     col[0][rt<<1|1] = (col[0][rt<<1|1] * col[1][rt] + col[0][rt] ) % M;
     52     col[0][rt] = 0; col[1][rt] = 1;
     53 
     54 }
     55 void pushup(int rt) {
     56     for (int i = 1; i <= 3; i++) {
     57         sum[i][rt] = (sum[i][rt<<1] + sum[i][rt<<1|1]) % M;
     58     }
     59 }
     60 void update(int L,int R,int op,int c,int l,int r,int rt) {
     61     if (L <= l && r <= R) {
     62         if (op == 1) {
     63             sum[3][rt] = ( sum[3][rt] + 3*c1*sum[2][rt] + 3*c2*sum[1][rt] + (r-l+1)*c3 ) % M;
     64             sum[2][rt] = ( sum[2][rt] + 2*c1*sum[1][rt] + (r-l+1)*c2 ) % M;
     65             sum[1][rt] = ( sum[1][rt] + (r-l+1)*c1 ) % M;
     66             col[0][rt] = (col[0][rt] + c1 ) % M;
     67         }else if ( op == 2) {
     68             sum[3][rt] = ( sum[3][rt] * c3 ) % M;
     69             sum[2][rt] = ( sum[2][rt] * c2 ) % M;
     70             sum[1][rt] = ( sum[1][rt] * c1 ) % M;
     71             col[0][rt] = ( col[0][rt] * c1 ) % M;
     72             col[1][rt] = ( col[1][rt] * c1 ) % M;
     73 
     74         }else if ( op == 3) {
     75             sum[3][rt] = (r - l + 1) * c3 % M;
     76             sum[2][rt] = (r - l + 1) * c2 % M;
     77             sum[1][rt] = (r - l + 1) * c1 % M;
     78 
     79             col[2][rt] = c1 % M;
     80             col[0][rt] = 0; col[1][rt] = 1;
     81 
     82         }
     83         return;
     84     }
     85     int m = (l+r) >> 1;
     86     pushdown(rt,l,m,r);
     87     if (L <= m) update(L,R,op,c,lson);
     88     if (m <  R) update(L,R,op,c,rson);
     89     pushup(rt);
     90 }
     91 
     92 int query(int L,int R,int c,int l,int r,int rt) {
     93     if (L <= l && r <= R) {
     94         return sum[c][rt];
     95     }
     96     int m = (l+r) >> 1;
     97     pushdown(rt,l,m,r);
     98     int t1 = 0, t2 = 0 ;
     99     if (L <= m) t1 = query(L,R,c,lson);
    100     if (m < R ) t2 = query(L,R,c,rson);
    101     return (t1+t2) % M;
    102 }
    103 int main(){
    104     while (~scanf("%d%d",&n,&m),n+m) {
    105         memset(sum,0,sizeof(sum));
    106         memset(col,0,sizeof(col));
    107         for (int i = 0; i <= (n<<2); i++) col[1][i] = 1;
    108         for (int i = 0; i < m; i++) {
    109             int op,l,r,c;
    110             scanf("%d%d%d%d",&op,&l,&r,&c);
    111             c1 = c % M; c2 = c1 * c1 % M; c3 = c1 * c2 % M;
    112             if (op == 1) {
    113                 update(l,r,op,c,1,n,1);
    114             }else if (op == 2) {
    115                 update(l,r,op,c,1,n,1);
    116             }else if (op == 3) {
    117                 update(l,r,op,c,1,n,1);
    118             }else if (op == 4) {
    119                 printf("%d
    ",query(l,r,c,1,n,1));
    120             }
    121         }
    122     }
    123     return 0;
    124 }
    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 using namespace std;
      5 
      6 #define lch (rt<<1)
      7 #define rch (rt<<1|1)
      8 
      9 const int N = 100010;
     10 const int mod = 10007;
     11 
     12 int s[4][N<<2];
     13 int mul[N<<2], add[N<<2], cov[N<<2];
     14 
     15 void build(int l, int r, int rt) {
     16     for (int i = 1; i <= 3; i++) s[i][rt] = 0;
     17     mul[rt] = 1; cov[rt] = add[rt] = 0;
     18     if (l == r) return;
     19     int m = (l + r) >> 1;
     20     build(l, m, lch);
     21     build(m + 1, r, rch);
     22 }
     23 
     24 void pushup(int rt) {
     25     for (int i = 1; i <= 3; i++)
     26         s[i][rt] = (s[i][lch] + s[i][rch]) % mod;
     27 }
     28 
     29 void maintain(int x, int k, int l, int r, int rt) {
     30     int len = r - l + 1;
     31     if (k == 3) {
     32         s[3][rt] = x * x % mod * x % mod * len % mod;
     33         s[2][rt] = x * x % mod * len % mod;
     34         s[1][rt] = x * len % mod;
     35         cov[rt] = x;
     36         mul[rt] = 1;
     37         add[rt] = 0;
     38     } else if (k == 2) {
     39         s[3][rt] = s[3][rt] * x % mod * x % mod * x % mod;
     40         s[2][rt] = s[2][rt] * x % mod * x % mod;
     41         s[1][rt] = s[1][rt] * x % mod;
     42         mul[rt] = mul[rt] * x % mod;
     43         add[rt] = add[rt] * x % mod;
     44     } else {
     45         s[3][rt] = (s[3][rt] + x * x % mod * x % mod * len % mod + 3 * s[2][rt] * x % mod + 3 * s[1][rt] * x % mod * x % mod) % mod;
     46         s[2][rt] = (s[2][rt] + x * x % mod * len % mod + 2 * x * s[1][rt] % mod) % mod;
     47         s[1][rt] = (s[1][rt] + x * len) % mod;
     48         add[rt] = (add[rt] + x) % mod;
     49     }
     50 }
     51 
     52 void pushdown(int l, int r, int rt) {
     53     int m = (l + r) >> 1;
     54     if (cov[rt]) {
     55         maintain(cov[rt], 3, l, m, lch);
     56         maintain(cov[rt], 3, m + 1, r, rch);
     57         cov[rt] = 0;
     58     }
     59     if (mul[rt] != 1) {
     60         maintain(mul[rt], 2, l, m, lch);
     61         maintain(mul[rt], 2, m + 1, r, rch);
     62         mul[rt] = 1;
     63     }
     64     if (add[rt] != 0) {
     65         maintain(add[rt], 1, l, m, lch);
     66         maintain(add[rt], 1, m + 1, r, rch);
     67         add[rt] = 0;
     68     }
     69 }
     70 
     71 void update(int ql, int qr, int x, int k, int l, int r, int rt) {
     72     if (ql <= l && r <= qr) {
     73         maintain(x, k, l, r, rt);
     74         return;
     75     }
     76     pushdown(l, r, rt);
     77     int m = (l + r) >> 1;
     78     if (ql <= m) update(ql, qr, x, k, l, m, lch);
     79     if (qr > m) update(ql, qr, x, k, m + 1, r, rch);
     80     pushup(rt);
     81 }
     82 
     83 int query(int ql, int qr, int k, int l, int r, int rt) {
     84     if (ql <= l && r <= qr) return s[k][rt];
     85     pushdown(l, r, rt);
     86     int m = (l + r) >> 1;
     87     int res = 0;
     88     if (ql <= m) res += query(ql, qr, k, l, m, lch);
     89     if (qr > m) res += query(ql, qr, k, m + 1, r, rch);
     90     return res % mod;
     91 }
     92 
     93 int main() {
     94     int n, m;
     95     while (scanf("%d%d", &n, &m), n || m) {
     96         build(1, n, 1);
     97         for (int i = 0; i < m; i++) {
     98             int op, x, y, c;
     99             scanf("%d%d%d%d", &op, &x, &y, &c);
    100             if (op < 4) {
    101                 update(x, y, c, op, 1, n, 1);
    102             } else {
    103                 int ans = query(x, y, c, 1, n, 1);
    104                 printf("%d
    ", ans);
    105             }
    106         }
    107     }
    108     return 0;
    109 }
    View Code

     hdu 4579

    题意:从1走到n点的期望是多少,告诉你p[i,j]即,在点i走到j的概率;

    分析:很标准的概率DP,然后列出方程,然后发现可以迭代消圆,一路搞下去就可以了;

    设dp[i]表示在i点到达目标点的期望,那么dp[i] = sum(p[i,j]*dp[j] ) +1; (j是从i可以到达的点)

    样例5 2 1 2 2 1 3 2 2 3 1 3

    dp[5] = 0;  (1)

    dp[4] = p[4,2] * dp[2]  + p[4,3] * dp[3] + p[4,4] * dp[4] + p[4,5] * dp[5] + 1;   (2)

    dp[3] = p[] * dp[1] + p[] * dp[2] + p[] * dp[3] + p[] * dp[4] + p[] * dp[5] + 1;    (3)

    dp[2] = p[] * dp[1] + p[] * dp[2] + p[] * dp[3] + p[] * dp[4] + 1;                       (4)

    dp[1] = p[] * dp[1] + p[] * dp[2] + p[] * dp[3]  + 1;                                         (5)

    从上到下迭代,把方程(1)带入(2)  则dp[4] 可以表示成  a*dp[2] + b * dp[3] + c;

    把dp[4] 和dp[5]一起带入(3)中  则dp[3] 可以表示成 d*dp[1] + e * dp[2] + f;

    这样一直迭代下去,最终就是dp[1] = g  ;

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<vector>
     8 #include<map>
     9 #include<set>
    10 #define lson l,m,rt<<1
    11 #define rson m+1,r,rt<<1|1
    12 #define pbk push_back
    13 #define mk make_pair
    14 using namespace std;
    15 const int N = 50000+10;
    16 typedef pair<int,int> pii;
    17 typedef long long LL;
    18 int n,m;
    19 int c[N][7];
    20 int sum[N];
    21 double w[N][7];
    22 double p[15];
    23 double dp[N];
    24 void solve(){
    25     memset(w,0,sizeof(w));
    26     memset(dp,0,sizeof(dp));
    27     dp[n] = 0;
    28     for (int i = n-1; i >= 1; i--) {
    29         int cnt = 0;
    30         double tmp = 0;
    31         memset(p,0,sizeof(p));
    32         for (int j = max(1,i-m); j <= min(n,i+m); j++){
    33             if (i == j) continue;
    34             if (i > j) p[ j-i+m+1 ] = 0.3*c[i][i-j]/(1+sum[i]);
    35             else if (i < j) p[ j-i+m+1 ] = 0.7*c[i][j-i]/(1+sum[i]);
    36             tmp += p[ j-i+m+1 ];
    37         }
    38         p[m+1] = 1- tmp;
    39         p[0] = 1;
    40         for (int j = i+m ; j > i; j--) {
    41             if (j >= n) continue;
    42             for (int k = m,c1 = 1; k > 0; k--,c1++) {
    43                 p[ j-i+m+1 - c1] += p[ j-i+m+1 ]*w[j][k];
    44             }
    45             p[0] += p[ j-i+m+1 ]*w[j][0];
    46         }
    47         double tp = 1 - p[m+1];
    48         for (int j = 0; j <= m; j++) {
    49             w[i][j] = p[j]/tp;
    50         }
    51     }
    52     printf("%.2lf
    ",w[1][0]);
    53 
    54 }
    55 int main(){
    56     while (~ scanf("%d%d",&n,&m),n+m) {
    57         for (int i = 1; i <= n; i++) {
    58             sum[i] = 0;
    59             for (int  j = 1; j <= m; j++){
    60                 scanf("%d",&c[i][j]);
    61                 sum[i] += c[i][j];
    62             }
    63         }
    64         solve();
    65     }
    66     return 0;
    67 }
    View Code

     hdu 4584

    题意:找最近的H和C;

    分析:暴力找;

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<vector>
     8 #include<map>
     9 #include<set>
    10 #define lson l,m,rt<<1
    11 #define rson m+1,r,rt<<1|1
    12 #define pbk push_back
    13 #define mk make_pair
    14 using namespace std;
    15 const int N = 10000+10;
    16 typedef pair<int,int> pii;
    17 typedef long long LL;
    18 char mz[50][50];
    19 int n,m;
    20 int sx,sy,ex,ey;
    21 int d;
    22 void find(int x,int y){
    23     for (int  i = 0; i < n; i++) {
    24         for (int j = 0; j < m; j++) {
    25             if (mz[i][j] == 'C') {
    26                 int td = abs(x-i) + abs(y-j);
    27                 if (td < d) {
    28                     sx = x; sy = y;
    29                     ex = i; ey =j;
    30                     d = td;
    31                 }
    32             }
    33         }
    34     }
    35 }
    36 int main(){
    37     while (~scanf("%d%d",&n,&m),n+m) {
    38         for (int i = 0; i < n; i++) {
    39             scanf("%s",mz[i]);
    40         }
    41         d = n*m + 10;
    42         sx = sy = ex = ey = -1;
    43         for (int i = 0; i < n; i++) {
    44             for (int j = 0; j < m; j++) {
    45                 if (mz[i][j] == 'H') {
    46                     find(i,j);
    47                 }
    48             }
    49         }
    50         printf("%d %d %d %d
    ",sx,sy,ex,ey);
    51     }
    52 
    53     return 0;
    54 }
    View Code

    hdu 4585

    题意:依次插入n个数,找前面离它最近的数

    分析:用set直接找;

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<vector>
     8 #include<map>
     9 #include<set>
    10 #define lson l,m,rt<<1
    11 #define rson m+1,r,rt<<1|1
    12 #define pbk push_back
    13 #define mk make_pair
    14 using namespace std;
    15 const int N = 10000+10;
    16 typedef pair<int,int> pii;
    17 typedef long long LL;
    18 set<pii> st;
    19 set<pii> :: iterator it;
    20 int n;
    21 int main(){
    22     while (~scanf("%d",&n),n) {
    23         st.clear();
    24         st.insert(mk(1000000000,1));
    25         for (int i = 0; i < n; i++) {
    26             int id,g;
    27             scanf("%d%d",&id,&g);
    28             pii t = mk(g,id);
    29             st.insert(t);
    30             it = st.lower_bound(t);
    31             it++;
    32             pii tmp1 = mk(0,-1), tmp2 = mk(0,-1);
    33             if (it != st.end()) {
    34                 tmp1 = *it;
    35             }
    36             it--;
    37             if (it != st.begin()){
    38                 tmp2 = *(--it);
    39             }
    40             int tp = -1,idx;
    41             if (tmp1.second != -1) {
    42                 if (tp == -1 || abs(tmp1.first - g) < tp){
    43                     tp = abs(tmp1.first - g);
    44                     idx =tmp1.second;
    45                 }
    46             }
    47             if (tmp2.second != -1) {
    48                 if (tp == -1 || abs(tmp2.first - g) <= tp) {
    49                     tp = abs(tmp2.first - g);
    50                     idx = tmp2.second;
    51                 }
    52             }
    53             printf("%d %d
    ",id,idx);
    54         }
    55     }
    56 
    57 
    58     return 0;
    59 }
    View Code
  • 相关阅读:
    go_base_03_if_for_switch_goto_流程控制
    go_base_02_dataType_常用数据类型
    go_base_01_var_const_变量和常量
    go_install_01_golang开发环境安装配置
    go_install_02_golang插件安装
    数据封装和私有属性
    类变量 实例变量 属性查找顺序
    微服务架构之「 服务注册 」
    Nginx配置https证书
    Go:go程序报错Cannot run program "C:UsersdellAppDataLocalTemp\___go_build_hello_go.exe" (in directory "…………"):该版本的 %1 与你运行的 Windows 版本不兼容。
  • 原文地址:https://www.cnblogs.com/Rlemon/p/3250936.html
Copyright © 2011-2022 走看看