zoukankan      html  css  js  c++  java
  • CodeUp墓地 问题 A: 最大连续子序列

    题目描述

    给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

    输入

    测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

    输出

    对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

    样例输入

    5
    -3 9 -2 5 -4
    3
    -2 -3 -1
    0

    样例输出

    12 9 5
    0 -2 -1

    提示


    这是一道稍微有点难度的动态规划题。 


    首先可以想到的做法是枚举每个区间的和,预处理sum[i]来表示区间[1, i]的和之后通过减法我们可以O(1)时间获得区间[i, j]的和,因此这个做法的时间复杂度为O(n^2)。 


    然后这题的数据范围较大,因此还需作进一步优化才可以AC。记第i个元素为a[i],定义dp[i]表示以下标i结尾的区间的最大和,那么dp[i]的计算有2种选择,一种是含有a[i-1],一种是不含有a[i-1],前者的最大值为dp[i-1]+a[i],后者的最大值为a[i]。而两者取舍的区别在于dp[i-1]是否大于0。

    [提交][状态]

    #include<iostream>
    using namespace std;
    
    int a[10000+10],dp[10000+10];
    
    int main()
    {
    	int n,m,j,k,i,T;
    	while (cin>>n && n)
    	{
    		for (i=0;i<n;i++)
    		cin>>a[i];
    		
    		dp[0] = a[0];
    		for (i=1;i<n;i++)
    		{
    			dp[i] = max(a[i],a[i]+dp[i-1]);//记录以i结尾的最大连续子序列和 
    		}
    		int index1=0,index2=n-1;//分别表示要输出的最大子段 的 首下标 和 尾下标 
    		k=0;
    		for (i=1;i<n;i++)
    		{
    			if (dp[i]>dp[k])//找出最大的dp[i],也就是最大子段和 
    			k = i;
    		}
    		
    		if (dp[k]<0)
    		cout<<0<<" "<<a[0]<<" "<<a[n-1]<<endl;
    		else
    		{
    			cout<<dp[k]<<" ";
    			index2 = k;
    			int sum=0;
    			for (i=k;i>=0;i--) //开始寻找首尾下标 
    			{
    				sum += a[i];
    				if (sum==dp[k])
    				{
    					index1 = i;
    					break;
    				}
    			}
    			cout<<a[index1]<<" "<<a[index2]<<endl;
    		}
    	}
    	
    	return 0;
    }
  • 相关阅读:
    获取和设置iframe中的元素
    css隔行换色样式修改
    在本地打开网页
    HTML-embed标签详解
    GlusterFS缺点分析[转]
    设计新Xlator扩展GlusterFS[转]
    C语言:全局变量在多个c文件中公用的方法 [转]
    const char*, char const*, char*const的区别
    C 语言字符数组的定义与初始化
    滑动窗口机制[转]
  • 原文地址:https://www.cnblogs.com/Romantic-Chopin/p/12451099.html
Copyright © 2011-2022 走看看