A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying two smaller natural numbers.
Now lets define a number NN as the supreme number if and only if each number made up of an non-empty subsequence of all the numeric digits of NN must be either a prime number or 11.
For example, 1717 is a supreme number because 11, 77, 1717 are all prime numbers or 11, and 1919 is not, because 99 is not a prime number.
Now you are given an integer N (2 leq N leq 10^{100})N (2≤N≤10100), could you find the maximal supreme number that does not exceed NN?
Input
In the first line, there is an integer T (T leq 100000)T (T≤100000) indicating the numbers of test cases.
In the following TT lines, there is an integer N (2 leq N leq 10^{100})N (2≤N≤10100).
Output
For each test case print
"Case #x: y"
, in which xx is the order number of the test case and yy is the answer.样例输入复制
2 6 100样例输出复制
Case #1: 5 Case #2: 73题目来源
题目意思:
给定长度达100的整数,要使
@这个数是质数或者1
@数字的每一位都必须是1或2或3或5或7
@数字的子序列所组成的数字也必须是质数。
比如317,3和1和7和31和37和17和317都是质数,那么317这个数字就符合标准。
题目思路:
考虑到答案中任意一位都必须是1或质数,可知答案只可能由1、2、3、5、7构成。由于任意两个不为1的数字构成 的两位数一定可以被11整除,所以答案中除1外的数字只能出现一次;1最多出现2次,因为111可以被3整除;而 2、5、7三者一定不会有两者同时出现。因此满足条件的整数不会超过四位,全部预处理出来即可。
方法:先打表
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
bool isprime(int x)
{
for (int i=2;i*i<=x;i++)
{
if (x%i==0)
return false;
}
return true;
}
bool check(int x)
{
int a=x%10;
int b=x/10%10;
int c=x/100;
int x1=a*10+b;
int x2=a*10+c;
int x3=b*10+c;
if (x>=1&&x<=9)
{
if (x==1||x==2||x==3||x==5||x==7)
return true;
else
return false;
}
else if (x>=10&&x<=99)
{
if (a!=1&&a!=2&&a!=3&&a!=5&&a!=7)
return false;
else if (b!=1&&b!=2&&b!=3&&b!=5&&b!=7)
return false;
else if (isprime(x)==false)
return false;
else
return true;
}
else if (x>=100&&x<=999)
{
if (a!=1&&a!=2&&a!=3&&a!=5&&a!=7)
return false;
else if (b!=1&&b!=2&&b!=3&&b!=5&&b!=7)
return false;
else if (c!=1&&c!=2&&c!=3&&c!=5&&c!=7)
return false;
else if (isprime(x1)==false ||isprime(x2)==false||isprime(x3)==false )
return false;
else if (isprime(x)==false)
return false;
else
return true;
}
}
int main()
{
for (int i=2;i<=999;i++)
if (check(i))
cout<<i<<endl;
}
得到数值为 :
2,3,5,7,11,13,17,23,31,37,53,71,73,113,131,137,173,311,317
所以答案代码为:
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int main()
{
int n,m,j,k,i,T,cas=0,num;
char a[1000];
int ans[]={2,3,5,7,11,13,17,23,31,37,53,71,73,113,131,137,173,311,317};
cin>>T;
getchar();
while (T--)
{
cas++;
num=0;
scanf("%s",a);
int len=strlen(a);
if (len>3)
{
printf("Case #%d: 317
",cas);
continue;
}
j=0;
for (i=len-1;i>=0;i--)
num += (a[i]-'0')*pow(10,j++);
//cout<<"num="<<num<<endl;
for (i=18;i>=0;i--)
{
if (num>=ans[i])
{
printf("Case #%d: %d
",cas,ans[i]);
break;
}
}
}
return 0;
}