zoukankan      html  css  js  c++  java
  • E

    There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist. 
    Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"? 

    InputThe input consists of several test cases.,Each test case contains two lines. 
    The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn. 
    A single 0 indicate the end of the input.OutputFor each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".Sample Input

    5 1 5
    3 3 1 2 5
    0

    Sample Output

    3
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long
    #define inf 0x3fffffff
    using namespace std;
    struct Node
    {
        int floor;
        int step;
    };
    
    int f[205];
    int vis[205];
    int dir[2]={-1,1};
    int n,a,b;
    queue<Node> q;
    int bfs()
    {
        while(!q.empty())
            q.pop();
    
        q.push(Node{a,0});
        while(!q.empty())
        {
            Node tmp;
            Node u=q.front();
            q.pop();
            if(u.floor==b)//到达
            {
                return u.step;
            }
            for(int i=0;i<2;i++)
            {
                tmp.floor=u.floor+f[u.floor]*dir[i];
                tmp.step=u.step+1;
                if(tmp.floor>=1&&tmp.floor<=n&&!vis[tmp.floor])
                    {
                        vis[tmp.floor]=1;
                        q.push(tmp);
                    }
            }
        }
        return -1;
    }
    
    int main()
    {
        while(~scanf("%d",&n)&&n)
        {
            scanf("%d%d",&a,&b);
            memset(vis,0,sizeof(vis));
            for(int i=1;i<=n;i++)
                scanf("%d",&f[i]);
            printf("%d
    ",bfs());
        }
        return 0;
    }
    View Code
  • 相关阅读:
    JAVA类加载机制
    redis 持久化的两种方式
    java动态代理(JDK和cglib)
    数据库事务的四大特性以及事务的隔离级别
    数据库范式
    Cookie/Session机制详解
    java多线程并发系列之闭锁(Latch)和栅栏(CyclicBarrier)
    BIO与NIO、AIO的区别
    高性能Server---Reactor模型
    Netty---相关
  • 原文地址:https://www.cnblogs.com/Roni-i/p/7406277.html
Copyright © 2011-2022 走看看