zoukankan      html  css  js  c++  java
  • E

    There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist. 
    Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"? 

    InputThe input consists of several test cases.,Each test case contains two lines. 
    The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn. 
    A single 0 indicate the end of the input.OutputFor each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".Sample Input

    5 1 5
    3 3 1 2 5
    0

    Sample Output

    3
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long
    #define inf 0x3fffffff
    using namespace std;
    struct Node
    {
        int floor;
        int step;
    };
    
    int f[205];
    int vis[205];
    int dir[2]={-1,1};
    int n,a,b;
    queue<Node> q;
    int bfs()
    {
        while(!q.empty())
            q.pop();
    
        q.push(Node{a,0});
        while(!q.empty())
        {
            Node tmp;
            Node u=q.front();
            q.pop();
            if(u.floor==b)//到达
            {
                return u.step;
            }
            for(int i=0;i<2;i++)
            {
                tmp.floor=u.floor+f[u.floor]*dir[i];
                tmp.step=u.step+1;
                if(tmp.floor>=1&&tmp.floor<=n&&!vis[tmp.floor])
                    {
                        vis[tmp.floor]=1;
                        q.push(tmp);
                    }
            }
        }
        return -1;
    }
    
    int main()
    {
        while(~scanf("%d",&n)&&n)
        {
            scanf("%d%d",&a,&b);
            memset(vis,0,sizeof(vis));
            for(int i=1;i<=n;i++)
                scanf("%d",&f[i]);
            printf("%d
    ",bfs());
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Windows netstat
    LOIC Download
    Open CV 环境配置
    C++ strcat_s
    c++ strlen() 函数
    css实现1px 像素线条_解决移动端1px线条的显示方式
    css中line-height的理解_介绍line-height实际应用
    css 分割线样式_css实现文章分割线的多种方法总结
    css获取除第一个之外的子元素
    css实现div多边框_box-shadow模拟多边框、outline描边实现
  • 原文地址:https://www.cnblogs.com/Roni-i/p/7406277.html
Copyright © 2011-2022 走看看