Vasya has n burles. One bottle of Ber-Cola costs a burles and one Bars bar costs b burles. He can buy any non-negative integer number of bottles of Ber-Cola and any non-negative integer number of Bars bars.
Find out if it's possible to buy some amount of bottles of Ber-Cola and Bars bars and spend exactly n burles.
In other words, you should find two non-negative integers x and y such that Vasya can buy x bottles of Ber-Cola and y Bars bars andx·a + y·b = n or tell that it's impossible.
First line contains single integer n (1 ≤ n ≤ 10 000 000) — amount of money, that Vasya has.
Second line contains single integer a (1 ≤ a ≤ 10 000 000) — cost of one bottle of Ber-Cola.
Third line contains single integer b (1 ≤ b ≤ 10 000 000) — cost of one Bars bar.
If Vasya can't buy Bars and Ber-Cola in such a way to spend exactly n burles print «NO» (without quotes).
Otherwise in first line print «YES» (without quotes). In second line print two non-negative integers x and y — number of bottles of Ber-Cola and number of Bars bars Vasya should buy in order to spend exactly n burles, i.e. x·a + y·b = n. If there are multiple answers print any of them.
Any of numbers x and y can be equal 0.
7
2
3
YES
2 1
100
25
10
YES
0 10
15
4
8
NO
9960594
2551
2557
YES
1951 1949
In first example Vasya can buy two bottles of Ber-Cola and one Bars bar. He will spend exactly 2·2 + 1·3 = 7 burles.
In second example Vasya can spend exactly n burles multiple ways:
- buy two bottles of Ber-Cola and five Bars bars;
- buy four bottles of Ber-Cola and don't buy Bars bars;
- don't buy Ber-Cola and buy 10 Bars bars.
In third example it's impossible to but Ber-Cola and Bars bars in order to spend exactly n burles.
【题意】:给你n问有没有两个非负整数x,y满足x·a + y·b = n。
【分析】:略带技巧的枚举。非负整数x,y上面做文章。
【代码】:
#include<bits/stdc++.h> using namespace std; int main() { int n,a,b; cin>>n>>a>>b; for(int i=0;i*a<=n;++i)//自己这个地方是i<=n,错了,可能出现到负数的时候%b==0的情况 { if((n-i*a)%b==0) { int j=(n-i*a)/b; puts("YES"); printf("%d %d ",i,j); exit(0); } } puts("NO"); return 0; }
#include <bits/stdc++.h> using namespace std; typedef long long int ll; ll ex_gcd(ll a,ll b,ll &x,ll &y) { if(b==0) { x=1; y=0; return a; } ll r=ex_gcd(b,a%b,x,y); ll t=x; x=y; y=t-a/b*y; return r; } bool jie(ll a,ll b,ll c,ll &x,ll &y) { ll r=ex_gcd(a,b,x,y); if(c%r!=0) return 0; ll zz=c/r; x*=zz; y*=zz; if(x<0&&y<0) return 0; ll bb=b/r; ll aa=a/r; if(x<0&&y>0) { ll t=-1*x/bb; if(x+bb*t<0) t++; x=x+bb*t; y=y-aa*t; if(y>=0) return 1; else return 0; } else if(x>0&&y<0) { ll t=y/aa; if(y-aa*t<0) t--; x=x+bb*t; y=y-aa*t; if(x>=0) return 1; else return 0; } return 1; } ll a,b,n,x,y; int main() { while(~scanf("%lld%lld%lld",&n,&a,&b)) { x=0; y=0; if(jie(a,b,n,x,y)) { printf("YES "); printf("%lld %lld ",x,y); } else { printf("NO "); } } return 0; }